Formatting Java Time with Spring Boot using JSON

stf0-banner The aim of this post is to summarize and review ways of formatting Java Time objects using Spring Boot and Jackson library.

This post is organized into five steps. Each step represents one aspect of the issue and it is also related to one commit in the example project repository.

Step 0 – Prerequirements

Versions and dependencies

This tutorial is based on Spring Boot version 1.3.1.RELEASE with spring-boot-starter-web. It uses jackson-datatype-jsr310 from com.fasterxml.jackson.datatype in version 2.6.4, which is a default version of Spring Boot. All of these is based on Java 8.

The Code

In the example code repository, you can find one HTTP service made with Spring Boot. This service is a GET operation, which returns a class with Java Time objects. You can also find the integration test that deserializes the response.

Step 1 – The goal

I would like to return class Clock, containing LocalDate,LocalTime and LocalDateTime, preinitialized in constructor.

public final class Clock {
    private final LocalDate localDate;
    private final LocalTime localTime;
    private final LocalDateTime localDateTime;
    ...
}

Response class is serialized to JSON Map, which is a default behaviour. To some extent it is correct, but ISO-formatted Strings in response are preferable.

{  
    "localDate":{  
        "year":2016,
        "month":"JANUARY",
        "era":"CE",
        "dayOfYear":1,
        "dayOfWeek":"FRIDAY",
        "leapYear":true,
        "dayOfMonth":1,
        "monthValue":1,
        "chronology":{  
            "id":"ISO",
            "calendarType":"iso8601"
        }
    }
}

Integration testing is an appropriate way to test our functionality.

ResponseEntity resp = sut.getForEntity("http://localhost:8080/clock", Clock.class);

assertEquals(OK, resp.getStatusCode());
assertEquals(c.getLocalDate(), resp.getBody().getLocalDate());
assertEquals(c.getLocalTime(), resp.getBody().getLocalTime());
assertEquals(c.getLocalDateTime(), resp.getBody().getLocalDateTime());

Unfortunately, tests are not passing, because of deserialization problems. The exception with message is thrown can not instantiate from JSON object.

Step 2 – Adds serialization

First things first. We have to add JSR-310 module. It is a datatype module to make Jackson recognize Java 8 Date & Time API data types.

Note that in this example jackson-datatype-jsr310 version is inherited from spring-boot-dependencies dependency management.

com.fasterxml.jackson.datatype
      jackson-datatype-jsr310

Response is now consistent but still, not perfect. Dates are serialized as numbers:

{  
    "version":2,
    "localDate":[  
        2016,
        1,
        1
    ],
    "localTime":[  
        10,
        24
    ],
    "localDateTime":[  
        2016,
        1,
        1,
        10,
        24
    ],
    "zonedDateTime":1451640240.000000000
}

We are one step closer to our goal. Tests are passing now because this format can be deserialized without any additional deserializers. How do I know? Start an application server on commit Step 2 - Adds Object Mapper, then checkout to Step 1 - Introduce types and problems, and run integration tests without @WebIntegrationTest annotation.

Step 3 – Enables ISO formatting

ISO 8601 formatting is a standard. I’ve found it in many projects. We are going to enable and use it. Edit spring boot properties file application.properties and add the following line:

spring.jackson.serialization.WRITE_DATES_AS_TIMESTAMPS = false

Now, the response is something that I’ve expected:

{  
    "version":2,
    "localDate":"2016-01-01",
    "localTime":"10:24",
    "localDateTime":"2016-01-01T10:24",
    "zonedDateTime":"2016-01-01T10:24:00+01:00"
}

Step 4 – Adds on-demand formatting pattern

Imagine one of your client systems does not have the capability of formatting time. It may be a primitive device or microservice that treats this date as a collection of characters. That is why special formatting is required.

We can change formatting in response class by adding JsonFormat annotation with pattern parameter. Standard SimpleDateFormat rules apply.

@JsonFormat(pattern = "dd::MM::yyyy")
private final LocalDate localDate;
    
@JsonFormat(pattern = "KK:mm a")
private final LocalTime localTime;

Below there is a service response using custom @JsonFormat pattern:

{  
    "version":2,
    "localDate":"01::01::2016",
    "localTime":"10:24 AM",
    "localDateTime":"2016-01-01T10:24",
    "zonedDateTime":"2016-01-01T10:24:00+01:00"
}

Our tests are still passing. It means that this pattern is used for serialization in service and deserialization in tests.

Step 5 – Globally changes formatting

There are situations where you have to resign from ISO 8601 formatting in your whole application, and apply custom-made standards.

In this part, we will redefine the format pattern for LocalDate. This will change formatting of LocalDate in every endpoint of your API.

We have to define: – DateTimeFormatter with our pattern. – Serializer using defined pattern. – Deserializer using defined pattern. – ObjectMapper bean with custom serializer and deserializer. – RestTemplate that uses our ObjectMapper.

Bean ObjectMapper is defined with annotation @Primary, to override default configuration. My custom pattern for LocalDate is dd::MM::yyyy

public static final DateTimeFormatter FORMATTER = ofPattern("dd::MM::yyyy");
    
@Bean
@Primary
public ObjectMapper serializingObjectMapper() {
    ObjectMapper objectMapper = new ObjectMapper();
    JavaTimeModule javaTimeModule = new JavaTimeModule();
    javaTimeModule.addSerializer(LocalDate.class, new LocalDateSerializer());
    javaTimeModule.addDeserializer(LocalDate.class, new LocalDateDeserializer());
    objectMapper.registerModule(javaTimeModule);
    return objectMapper;
}

Definitions of serializer and deserializer for all LocalDate classes:

public class LocalDateSerializer extends JsonSerializer {
    
    @Override
    public void serialize(LocalDate value, JsonGenerator gen, SerializerProvider serializers) throws IOException {
        gen.writeString(value.format(FORMATTER));
    }
}
    
public class LocalDateDeserializer extends JsonDeserializer {
    
    @Override
    public LocalDate deserialize(JsonParser p, DeserializationContext ctxt) throws IOException {
        return LocalDate.parse(p.getValueAsString(), FORMATTER);
    }
}

Now, the response is formatted with our custom pattern:

{  
    "localDate":"01::01::2016"
}

Tests

When we define a custom serializer, our tests start to fail. It is because RestTemplate knows nothing about our deserializer. We have to create a custom RestTemplateFactory that creates RestTemplate with object mapper containing our deserializer.

@Configuration
public class RestTemplateFactory {
    
    @Autowired
    private ObjectMapper objectMapper;
    
    @Bean
    public RestTemplate createRestTemplate() {
        RestTemplate restTemplate = new RestTemplate();
        List converters = new ArrayList();
        MappingJackson2HttpMessageConverter jsonConverter = new MappingJackson2HttpMessageConverter();
        jsonConverter.setObjectMapper(objectMapper);
        converters.add(jsonConverter);
        restTemplate.setMessageConverters(converters);
        return restTemplate;
    }
}

Conclusion

Custom formatting Dates is relatively simple, but you have to know how to set up it. Luckily, Jackson works smoothly with Spring. If you know other ways of solving this problem or you have other observations, please comment or let me know.

Blog from Michał Lewandowski personal blog. Photo Credit.

You May Also Like

Cross-platform mobile apps – possible or not?

What is Titanium and how it works. Titanium is an open-source solution for cross-platform, almost-native mobile app development. It has its own MVC, JavaScript and XML-based framework Alloy. Titanium is based on assumption, that each app can be divided into two parts: UI, which is platform-specific part and application core – business logic, common to all […]What is Titanium and how it works. Titanium is an open-source solution for cross-platform, almost-native mobile app development. It has its own MVC, JavaScript and XML-based framework Alloy. Titanium is based on assumption, that each app can be divided into two parts: UI, which is platform-specific part and application core – business logic, common to all […]

How to use mocks in controller tests

Even since I started to write tests for my Grails application I couldn't find many articles on using mocks. Everyone is talking about tests and TDD but if you search for it there isn't many articles.

Today I want to share with you a test with mocks for a simple and complete scenario. I have a simple application that can fetch Twitter tweets and present it to user. I use REST service and I use GET to fetch tweets by id like this: http://api.twitter.com/1/statuses/show/236024636775735296.json. You can copy and paste it into your browser to see a result.

My application uses Grails 2.1 with spock-0.6 for tests. I have TwitterReaderService that fetches tweets by id, then I parse a response into my Tweet class.


class TwitterReaderService {
Tweet readTweet(String id) throws TwitterError {
try {
String jsonBody = callTwitter(id)
Tweet parsedTweet = parseBody(jsonBody)
return parsedTweet
} catch (Throwable t) {
throw new TwitterError(t)
}
}

private String callTwitter(String id) {
// TODO: implementation
}

private Tweet parseBody(String jsonBody) {
// TODO: implementation
}
}

class Tweet {
String id
String userId
String username
String text
Date createdAt
}

class TwitterError extends RuntimeException {}

TwitterController plays main part here. Users call show action along with id of a tweet. This action is my subject under test. I've implemented some basic functionality. It's easier to focus on it while writing tests.


class TwitterController {
def twitterReaderService

def index() {
}

def show() {
Tweet tweet = twitterReaderService.readTweet(params.id)
if (tweet == null) {
flash.message = 'Tweet not found'
redirect(action: 'index')
return
}

[tweet: tweet]
}
}

Let's start writing a test from scratch. Most important thing here is that I use mock for my TwitterReaderService. I do not construct new TwitterReaderService(), because in this test I test only TwitterController. I am not interested in injected service. I know how this service is supposed to work and I am not interested in internals. So before every test I inject a twitterReaderServiceMock into controller:


import grails.test.mixin.TestFor
import spock.lang.Specification

@TestFor(TwitterController)
class TwitterControllerSpec extends Specification {
TwitterReaderService twitterReaderServiceMock = Mock(TwitterReaderService)

def setup() {
controller.twitterReaderService = twitterReaderServiceMock
}
}

Now it's time to think what scenarios I need to test. This line from TwitterReaderService is the most important:


Tweet readTweet(String id) throws TwitterError

You must think of this method like a black box right now. You know nothing of internals from controller's point of view. You're only interested what can be returned for you:

  • a TwitterError can be thrown
  • null can be returned
  • Tweet instance can be returned

This list is your test blueprint. Now answer a simple question for each element: "What do I want my controller to do in this situation?" and you have plan test:

  • show action should redirect to index if TwitterError is thrown and inform about error
  • show action should redirect to index and inform if tweet is not found
  • show action should show found tweet

That was easy and straightforward! And now is the best part: we use twitterReaderServiceMock to mock each of these three scenarios!

In Spock there is a good documentation about interaction with mocks. You declare what methods are called, how many times, what parameters are given and what should be returned. Remember a black box? Mock is your black box with detailed instruction, e.g.: I expect you that if receive exactly one call to readTweet with parameter '1' then you should throw me a TwitterError. Rephrase this sentence out loud and look at this:


1 * twitterReaderServiceMock.readTweet('1') >> { throw new TwitterError() }

This is a valid interaction definition on mock! It's that easy! Here is a complete test that fails for now:


import grails.test.mixin.TestFor
import spock.lang.Specification

@TestFor(TwitterController)
class TwitterControllerSpec extends Specification {
TwitterReaderService twitterReaderServiceMock = Mock(TwitterReaderService)

def setup() {
controller.twitterReaderService = twitterReaderServiceMock
}

def "show should redirect to index if TwitterError is thrown"() {
given:
controller.params.id = '1'
when:
controller.show()
then:
1 * twitterReaderServiceMock.readTweet('1') >> { throw new TwitterError() }
0 * _._
flash.message == 'There was an error on fetching your tweet'
response.redirectUrl == '/twitter/index'
}
}

| Failure: show should redirect to index if TwitterError is thrown(pl.refaktor.twitter.TwitterControllerSpec)
| pl.refaktor.twitter.TwitterError
at pl.refaktor.twitter.TwitterControllerSpec.show should redirect to index if TwitterError is thrown_closure1(TwitterControllerSpec.groovy:29)

You may notice 0 * _._ notation. It says: I don't want any other mocks or any other methods called. Fail this test if something is called! It's a good practice to ensure that there are no more interactions than you want.

Ok, now I need to implement controller logic to handle TwitterError.


class TwitterController {

def twitterReaderService

def index() {
}

def show() {
Tweet tweet

try {
tweet = twitterReaderService.readTweet(params.id)
} catch (TwitterError e) {
log.error(e)
flash.message = 'There was an error on fetching your tweet'
redirect(action: 'index')
return
}

[tweet: tweet]
}
}

My tests passes! We have two scenarios left. Rule stays the same: TwitterReaderService returns something and we test against it. So this line is the heart of each test, change only returned values after >>:


1 * twitterReaderServiceMock.readTweet('1') >> { throw new TwitterError() }

Here is a complete test for three scenarios and controller that passes it.


import grails.test.mixin.TestFor
import spock.lang.Specification

@TestFor(TwitterController)
class TwitterControllerSpec extends Specification {

TwitterReaderService twitterReaderServiceMock = Mock(TwitterReaderService)

def setup() {
controller.twitterReaderService = twitterReaderServiceMock
}

def "show should redirect to index if TwitterError is thrown"() {
given:
controller.params.id = '1'
when:
controller.show()
then:
1 * twitterReaderServiceMock.readTweet('1') >> { throw new TwitterError() }
0 * _._
flash.message == 'There was an error on fetching your tweet'
response.redirectUrl == '/twitter/index'
}

def "show should inform about not found tweet"() {
given:
controller.params.id = '1'
when:
controller.show()
then:
1 * twitterReaderServiceMock.readTweet('1') >> null
0 * _._
flash.message == 'Tweet not found'
response.redirectUrl == '/twitter/index'
}


def "show should show found tweet"() {
given:
controller.params.id = '1'
when:
controller.show()
then:
1 * twitterReaderServiceMock.readTweet('1') >> new Tweet()
0 * _._
flash.message == null
response.status == 200
}
}

class TwitterController {

def twitterReaderService

def index() {
}

def show() {
Tweet tweet

try {
tweet = twitterReaderService.readTweet(params.id)
} catch (TwitterError e) {
log.error(e)
flash.message = 'There was an error on fetching your tweet'
redirect(action: 'index')
return
}

if (tweet == null) {
flash.message = 'Tweet not found'
redirect(action: 'index')
return
}

[tweet: tweet]
}
}

The most important thing here is that we've tested controller-service interaction without logic implementation in service! That's why mock technique is so useful. It decouples your dependencies and let you focus on exactly one subject under test. Happy testing!