Formatting Java Time with Spring Boot using JSON

stf0-banner The aim of this post is to summarize and review ways of formatting Java Time objects using Spring Boot and Jackson library.

This post is organized into five steps. Each step represents one aspect of the issue and it is also related to one commit in the example project repository.

Step 0 – Prerequirements

Versions and dependencies

This tutorial is based on Spring Boot version 1.3.1.RELEASE with spring-boot-starter-web. It uses jackson-datatype-jsr310 from com.fasterxml.jackson.datatype in version 2.6.4, which is a default version of Spring Boot. All of these is based on Java 8.

The Code

In the example code repository, you can find one HTTP service made with Spring Boot. This service is a GET operation, which returns a class with Java Time objects. You can also find the integration test that deserializes the response.

Step 1 – The goal

I would like to return class Clock, containing LocalDate,LocalTime and LocalDateTime, preinitialized in constructor.

public final class Clock {
    private final LocalDate localDate;
    private final LocalTime localTime;
    private final LocalDateTime localDateTime;
    ...
}

Response class is serialized to JSON Map, which is a default behaviour. To some extent it is correct, but ISO-formatted Strings in response are preferable.

{  
    "localDate":{  
        "year":2016,
        "month":"JANUARY",
        "era":"CE",
        "dayOfYear":1,
        "dayOfWeek":"FRIDAY",
        "leapYear":true,
        "dayOfMonth":1,
        "monthValue":1,
        "chronology":{  
            "id":"ISO",
            "calendarType":"iso8601"
        }
    }
}

Integration testing is an appropriate way to test our functionality.

ResponseEntity resp = sut.getForEntity("http://localhost:8080/clock", Clock.class);

assertEquals(OK, resp.getStatusCode());
assertEquals(c.getLocalDate(), resp.getBody().getLocalDate());
assertEquals(c.getLocalTime(), resp.getBody().getLocalTime());
assertEquals(c.getLocalDateTime(), resp.getBody().getLocalDateTime());

Unfortunately, tests are not passing, because of deserialization problems. The exception with message is thrown can not instantiate from JSON object.

Step 2 – Adds serialization

First things first. We have to add JSR-310 module. It is a datatype module to make Jackson recognize Java 8 Date & Time API data types.

Note that in this example jackson-datatype-jsr310 version is inherited from spring-boot-dependencies dependency management.

com.fasterxml.jackson.datatype
      jackson-datatype-jsr310

Response is now consistent but still, not perfect. Dates are serialized as numbers:

{  
    "version":2,
    "localDate":[  
        2016,
        1,
        1
    ],
    "localTime":[  
        10,
        24
    ],
    "localDateTime":[  
        2016,
        1,
        1,
        10,
        24
    ],
    "zonedDateTime":1451640240.000000000
}

We are one step closer to our goal. Tests are passing now because this format can be deserialized without any additional deserializers. How do I know? Start an application server on commit Step 2 - Adds Object Mapper, then checkout to Step 1 - Introduce types and problems, and run integration tests without @WebIntegrationTest annotation.

Step 3 – Enables ISO formatting

ISO 8601 formatting is a standard. I’ve found it in many projects. We are going to enable and use it. Edit spring boot properties file application.properties and add the following line:

spring.jackson.serialization.WRITE_DATES_AS_TIMESTAMPS = false

Now, the response is something that I’ve expected:

{  
    "version":2,
    "localDate":"2016-01-01",
    "localTime":"10:24",
    "localDateTime":"2016-01-01T10:24",
    "zonedDateTime":"2016-01-01T10:24:00+01:00"
}

Step 4 – Adds on-demand formatting pattern

Imagine one of your client systems does not have the capability of formatting time. It may be a primitive device or microservice that treats this date as a collection of characters. That is why special formatting is required.

We can change formatting in response class by adding JsonFormat annotation with pattern parameter. Standard SimpleDateFormat rules apply.

@JsonFormat(pattern = "dd::MM::yyyy")
private final LocalDate localDate;
    
@JsonFormat(pattern = "KK:mm a")
private final LocalTime localTime;

Below there is a service response using custom @JsonFormat pattern:

{  
    "version":2,
    "localDate":"01::01::2016",
    "localTime":"10:24 AM",
    "localDateTime":"2016-01-01T10:24",
    "zonedDateTime":"2016-01-01T10:24:00+01:00"
}

Our tests are still passing. It means that this pattern is used for serialization in service and deserialization in tests.

Step 5 – Globally changes formatting

There are situations where you have to resign from ISO 8601 formatting in your whole application, and apply custom-made standards.

In this part, we will redefine the format pattern for LocalDate. This will change formatting of LocalDate in every endpoint of your API.

We have to define: – DateTimeFormatter with our pattern. – Serializer using defined pattern. – Deserializer using defined pattern. – ObjectMapper bean with custom serializer and deserializer. – RestTemplate that uses our ObjectMapper.

Bean ObjectMapper is defined with annotation @Primary, to override default configuration. My custom pattern for LocalDate is dd::MM::yyyy

public static final DateTimeFormatter FORMATTER = ofPattern("dd::MM::yyyy");
    
@Bean
@Primary
public ObjectMapper serializingObjectMapper() {
    ObjectMapper objectMapper = new ObjectMapper();
    JavaTimeModule javaTimeModule = new JavaTimeModule();
    javaTimeModule.addSerializer(LocalDate.class, new LocalDateSerializer());
    javaTimeModule.addDeserializer(LocalDate.class, new LocalDateDeserializer());
    objectMapper.registerModule(javaTimeModule);
    return objectMapper;
}

Definitions of serializer and deserializer for all LocalDate classes:

public class LocalDateSerializer extends JsonSerializer {
    
    @Override
    public void serialize(LocalDate value, JsonGenerator gen, SerializerProvider serializers) throws IOException {
        gen.writeString(value.format(FORMATTER));
    }
}
    
public class LocalDateDeserializer extends JsonDeserializer {
    
    @Override
    public LocalDate deserialize(JsonParser p, DeserializationContext ctxt) throws IOException {
        return LocalDate.parse(p.getValueAsString(), FORMATTER);
    }
}

Now, the response is formatted with our custom pattern:

{  
    "localDate":"01::01::2016"
}

Tests

When we define a custom serializer, our tests start to fail. It is because RestTemplate knows nothing about our deserializer. We have to create a custom RestTemplateFactory that creates RestTemplate with object mapper containing our deserializer.

@Configuration
public class RestTemplateFactory {
    
    @Autowired
    private ObjectMapper objectMapper;
    
    @Bean
    public RestTemplate createRestTemplate() {
        RestTemplate restTemplate = new RestTemplate();
        List converters = new ArrayList();
        MappingJackson2HttpMessageConverter jsonConverter = new MappingJackson2HttpMessageConverter();
        jsonConverter.setObjectMapper(objectMapper);
        converters.add(jsonConverter);
        restTemplate.setMessageConverters(converters);
        return restTemplate;
    }
}

Conclusion

Custom formatting Dates is relatively simple, but you have to know how to set up it. Luckily, Jackson works smoothly with Spring. If you know other ways of solving this problem or you have other observations, please comment or let me know.

Blog from Michał Lewandowski personal blog. Photo Credit.

You May Also Like

Integration testing custom validation constraints in Jersey 2

I recently joined a team trying to switch a monolithic legacy system into set of RESTful services in Java. They decided to use latest 2.x version of Jersey as a REST container which was not a first choice for me, since I’m not a big fan of JSR-* specs. But now I must admit that JAX-RS 2.x is doing things right: requires almost zero boilerplate code, support auto-discovery of features and prefers convention over configuration like other modern frameworks. Since the spec is still young, it’s hard to find good tutorials and kick-off projects with some working code. I created jersey2-starter project on GitHub which can be used as starting point for your own production-ready RESTful service. In this post I’d like to cover how to implement and integration test your own validation constraints of REST resources.

Custom constraints

One of the issues which bothers me when coding REST in Java is littering your class model with annotations. Suppose you want to build a simple Todo list REST service, when using Jackson, validation and Spring Data, you can easily end up with this as your entity class:

@Document
public class Todo {
    private Long id;
    @NotNull
    private String description;
    @NotNull
    private Boolean completed;
    @NotNull
    private DateTime dueDate;

    @JsonCreator
    public Todo(@JsonProperty("description") String description, @JsonProperty("dueDate") DateTime dueDate) {
        this.description = description;
        this.dueDate = dueDate;
        this.completed = false;
    }
    // getters and setters
}

Your domain model is now effectively blured by messy annotations almost everywhere. Let’s see what we can do with validation constraints (@NotNulls). Some may say that you could introduce some DTO layer with own validation rules, but it conflicts for me with pure REST API design, which stands that you operate on resources which should map to your domain classes. On the other hand - what does it mean that Todo object is valid? When you create a Todo you should provide a description and due date, but what when you’re updating? You should be able to change any of description, due date (postponing) and completion flag (marking as done) - but you should provide at least one of these as valid modification. So my idea is to introduce custom validation constraints, different ones for creation and modification:

@Target({TYPE, PARAMETER})
@Retention(RUNTIME)
@Constraint(validatedBy = ValidForCreation.Validator.class)
public @interface ValidForCreation {
    //...
    class Validator implements ConstraintValidator<ValidForCreation, Todo> {
    /...
        @Override
        public boolean isValid(Todo todo, ConstraintValidatorContext constraintValidatorContext) {
            return todo != null
                && todo.getId() == null
                && todo.getDescription() != null
                && todo.getDueDate() != null;
        }
    }
}

@Target({TYPE, PARAMETER})
@Retention(RUNTIME)
@Constraint(validatedBy = ValidForModification.Validator.class)
public @interface ValidForModification {
    //...
    class Validator implements ConstraintValidator<ValidForModification, Todo> {
    /...
        @Override
        public boolean isValid(Todo todo, ConstraintValidatorContext constraintValidatorContext) {
            return todo != null
                && todo.getId() == null
                && (todo.getDescription() != null || todo.getDueDate() != null || todo.isCompleted() != null);
        }
    }
}

And now you can move validation annotations to the definition of a REST endpoint:

@POST
@Consumes(APPLICATION_JSON)
public Response create(@ValidForCreation Todo todo) {...}

@PUT
@Consumes(APPLICATION_JSON)
public Response update(@ValidForModification Todo todo) {...}

And now you can remove those NotNulls from your model.

Integration testing

There are in general two approaches to integration testing:

  • test is being run on separate JVM than the app, which is deployed on some other integration environment
  • test deploys the application programmatically in the setup block.

Both of these have their pros and cons, but for small enough servoces, I personally prefer the second approach. It’s much easier to setup and you have only one JVM started, which makes debugging really easy. You can use a generic framework like Arquillian for starting your application in a container environment, but I prefer simple solutions and just use emdedded Jetty. To make test setup 100% production equivalent, I’m creating full Jetty’s WebAppContext and have to resolve all runtime dependencies for Jersey auto-discovery to work. This can be simply achieved with Maven resolved from Shrinkwrap - an Arquillian subproject:

    WebAppContext webAppContext = new WebAppContext();
    webAppContext.setResourceBase("src/main/webapp");
    webAppContext.setContextPath("/");
    File[] mavenLibs = Maven.resolver().loadPomFromFile("pom.xml")
                .importCompileAndRuntimeDependencies()
                .resolve().withTransitivity().asFile();
    for (File file: mavenLibs) {
        webAppContext.getMetaData().addWebInfJar(new FileResource(file.toURI()));
    }
    webAppContext.getMetaData().addContainerResource(new FileResource(new File("./target/classes").toURI()));

    webAppContext.setConfigurations(new Configuration[] {
        new AnnotationConfiguration(),
        new WebXmlConfiguration(),
        new WebInfConfiguration()
    });
    server.setHandler(webAppContext);

(this Stackoverflow thread inspired me a lot here)

Now it’s time for the last part of the post: parametrizing our integration tests. Since we want to test validation constraints, there are many edge paths to check (and make your code coverage close to 100%). Writing one test per each case could be a bad idea. Among the many solutions for JUnit I’m most convinced to the Junit Params by Pragmatists team. It’s really simple and have nice concept of JQuery-like helper for creating providers. Here is my tests code (I’m also using builder pattern here to create various kinds of Todos):

@Test
@Parameters(method = "provideInvalidTodosForCreation")
public void shouldRejectInvalidTodoWhenCreate(Todo todo) {
    Response response = createTarget().request().post(Entity.json(todo));

    assertThat(response.getStatus()).isEqualTo(BAD_REQUEST.getStatusCode());
}

private static Object[] provideInvalidTodosForCreation() {
    return $(
        new TodoBuilder().withDescription("test").build(),
        new TodoBuilder().withDueDate(DateTime.now()).build(),
        new TodoBuilder().withId(123L).build(),
        new TodoBuilder().build()
    );
}

OK, enough of reading, feel free to clone the project and start writing your REST services!

I recently joined a team trying to switch a monolithic legacy system into set of RESTful services in Java. They decided to use latest 2.x version of Jersey as a REST container which was not a first choice for me, since I’m not a big fan of JSR-* specs. But now I must admit that JAX-RS 2.x is doing things right: requires almost zero boilerplate code, support auto-discovery of features and prefers convention over configuration like other modern frameworks. Since the spec is still young, it’s hard to find good tutorials and kick-off projects with some working code. I created jersey2-starter project on GitHub which can be used as starting point for your own production-ready RESTful service. In this post I’d like to cover how to implement and integration test your own validation constraints of REST resources.

Custom constraints

One of the issues which bothers me when coding REST in Java is littering your class model with annotations. Suppose you want to build a simple Todo list REST service, when using Jackson, validation and Spring Data, you can easily end up with this as your entity class:

@Document
public class Todo {
    private Long id;
    @NotNull
    private String description;
    @NotNull
    private Boolean completed;
    @NotNull
    private DateTime dueDate;

    @JsonCreator
    public Todo(@JsonProperty("description") String description, @JsonProperty("dueDate") DateTime dueDate) {
        this.description = description;
        this.dueDate = dueDate;
        this.completed = false;
    }
    // getters and setters
}

Your domain model is now effectively blured by messy annotations almost everywhere. Let’s see what we can do with validation constraints (@NotNulls). Some may say that you could introduce some DTO layer with own validation rules, but it conflicts for me with pure REST API design, which stands that you operate on resources which should map to your domain classes. On the other hand - what does it mean that Todo object is valid? When you create a Todo you should provide a description and due date, but what when you’re updating? You should be able to change any of description, due date (postponing) and completion flag (marking as done) - but you should provide at least one of these as valid modification. So my idea is to introduce custom validation constraints, different ones for creation and modification:

@Target({TYPE, PARAMETER})
@Retention(RUNTIME)
@Constraint(validatedBy = ValidForCreation.Validator.class)
public @interface ValidForCreation {
    //...
    class Validator implements ConstraintValidator<ValidForCreation, Todo> {
    /...
        @Override
        public boolean isValid(Todo todo, ConstraintValidatorContext constraintValidatorContext) {
            return todo != null
                && todo.getId() == null
                && todo.getDescription() != null
                && todo.getDueDate() != null;
        }
    }
}

@Target({TYPE, PARAMETER})
@Retention(RUNTIME)
@Constraint(validatedBy = ValidForModification.Validator.class)
public @interface ValidForModification {
    //...
    class Validator implements ConstraintValidator<ValidForModification, Todo> {
    /...
        @Override
        public boolean isValid(Todo todo, ConstraintValidatorContext constraintValidatorContext) {
            return todo != null
                && todo.getId() == null
                && (todo.getDescription() != null || todo.getDueDate() != null || todo.isCompleted() != null);
        }
    }
}

And now you can move validation annotations to the definition of a REST endpoint:

@POST
@Consumes(APPLICATION_JSON)
public Response create(@ValidForCreation Todo todo) {...}

@PUT
@Consumes(APPLICATION_JSON)
public Response update(@ValidForModification Todo todo) {...}

And now you can remove those NotNulls from your model.

Integration testing

There are in general two approaches to integration testing:

  • test is being run on separate JVM than the app, which is deployed on some other integration environment
  • test deploys the application programmatically in the setup block.

Both of these have their pros and cons, but for small enough servoces, I personally prefer the second approach. It’s much easier to setup and you have only one JVM started, which makes debugging really easy. You can use a generic framework like Arquillian for starting your application in a container environment, but I prefer simple solutions and just use emdedded Jetty. To make test setup 100% production equivalent, I’m creating full Jetty’s WebAppContext and have to resolve all runtime dependencies for Jersey auto-discovery to work. This can be simply achieved with Maven resolved from Shrinkwrap - an Arquillian subproject:

    WebAppContext webAppContext = new WebAppContext();
    webAppContext.setResourceBase("src/main/webapp");
    webAppContext.setContextPath("/");
    File[] mavenLibs = Maven.resolver().loadPomFromFile("pom.xml")
                .importCompileAndRuntimeDependencies()
                .resolve().withTransitivity().asFile();
    for (File file: mavenLibs) {
        webAppContext.getMetaData().addWebInfJar(new FileResource(file.toURI()));
    }
    webAppContext.getMetaData().addContainerResource(new FileResource(new File("./target/classes").toURI()));

    webAppContext.setConfigurations(new Configuration[] {
        new AnnotationConfiguration(),
        new WebXmlConfiguration(),
        new WebInfConfiguration()
    });
    server.setHandler(webAppContext);

(this Stackoverflow thread inspired me a lot here)

Now it’s time for the last part of the post: parametrizing our integration tests. Since we want to test validation constraints, there are many edge paths to check (and make your code coverage close to 100%). Writing one test per each case could be a bad idea. Among the many solutions for JUnit I’m most convinced to the Junit Params by Pragmatists team. It’s really simple and have nice concept of JQuery-like helper for creating providers. Here is my tests code (I’m also using builder pattern here to create various kinds of Todos):

@Test
@Parameters(method = "provideInvalidTodosForCreation")
public void shouldRejectInvalidTodoWhenCreate(Todo todo) {
    Response response = createTarget().request().post(Entity.json(todo));

    assertThat(response.getStatus()).isEqualTo(BAD_REQUEST.getStatusCode());
}

private static Object[] provideInvalidTodosForCreation() {
    return $(
        new TodoBuilder().withDescription("test").build(),
        new TodoBuilder().withDueDate(DateTime.now()).build(),
        new TodoBuilder().withId(123L).build(),
        new TodoBuilder().build()
    );
}

OK, enough of reading, feel free to clone the project and start writing your REST services!