Solving package dependency problem using synonyms

Problem I take part in supporting an ODS system. One of the biggest problem during deployment of revisions is the dependency between packages. Suppose a package A has to be changed and that it is referenced be two packages: B1 and B2 which are used in some database sessions. If the the A package is altered and it contained some global variables then the next execution of the packages B1 or B2 in those sessions triggers “ORA-04061: existing state of package has been invalidated” error. This is because global variables preserve their values during database sessions. Alteration of the package code may change the variables, delete some of them, add others. Therefore, they have to be initialized again. Reseting the global variables during the session could lead to inconsistency. In order to prevent this. Oracle throws the ORA-04061 exception. This mechanism is described in details on the page 

http://oraclequirks.blogspot.com/2007/03/ora-04061-existing-state-of-package-has.html

In addition, alteration of the package body or package specification is not possible as long as it used in a session. The replacing package DDL (CREATE OR REPLACE PACKAGE [BODY]) waits until no session uses the package. This may never happen – if new session starts using package before the previous one stops doing that. In order to change the package – all sessions using it must be killed. It is quite common that a session cannot be killed right now, but is moved into MARKED FOR KILLED state. As a result, the deployment of new package version is postponed for indefinite period of time until the session is really killed. I even created a script which kills all sessions which blocks any session started from my computer by my OS user. The script is really crude but it works and is really useful so I am posting it here.

DECLARE
  CURSOR c_sql_hist(pp_machine VARCHAR2, pp_osuser VARCHAR2) IS
    SELECT ash.blocking_session, ash.blocking_session_status, ash.blocking_session_serial#, s.program, s.module, s.action
      FROM v$active_session_history ash
      JOIN v$session s ON ash.blocking_session = s.sid
                      AND ash.blocking_session_serial# = s.serial#
     WHERE ash.session_id in ( select sid from v$session where machine = pp_machine
     and osuser = pp_osuser )
       AND ash.sample_time > SYSDATE - 2 / 24 / 3600
     ORDER BY sample_time DESC;
  v_r c_sql_hist%ROWTYPE;

  v_my_machine v$session.MACHINE%TYPE;
  v_my_osuser v$session.osuser%TYPE;
BEGIN
  select machine, osuser into v_my_machine, v_my_osuser from v$session
  where sid = ( Select Sid from v$mystat where rownum = 1);

  for i in 1..10000 loop  -- just to prevent infinite execution
    dbms_output.put_line('step: ' || i );
    OPEN c_sql_hist(v_my_machine, v_my_osuser);
    FETCH c_sql_hist
      INTO v_r;
    IF NOT c_sql_hist%NOTFOUND THEN
      dbms_output.put_line(v_r.blocking_session || ' ' || v_r.blocking_session_status || ' ' || v_r.blocking_session_serial# || ' ' || v_r.program || ' ' ||
                           v_r.module || ' ' || v_r.action);
      execute immediate ' ALTER SYSTEM KILL SESSION ''' || v_r.blocking_session || ',' || v_r.blocking_session_serial# || '''';
    else
      exit;
    END IF;
    CLOSE c_sql_hist;
    dbms_lock.sleep(0.5); -- sleep is used to get new blocking sessions
  end loop;
END;

In order to reduce the dependency problems described above, various tool packages, which should be located in one central schema, were copied to all schemas. As a result, they may be changed without killing all (only some) processes. However, this solution is terrible from the point of view of code maintenance.

Solution

The solution to this problem is to reference packages by synonyms. If the package need to be changed – a new version of it is installed with a different name. After it is tested – the synonym is altered to point the new version. The nearest execution of this synonym within a session causes the new package to be executed. Its global variables are initialized, their previous values are lost but this is not a problem in our ODS as they work as a cache and does not hold any state between executions. There is an additional limitation that one procedure or package cannot be executed concurrently is its instances use different object through the same synonym. Suppose that after B1 is executed, the A synonym is changed to point to A_v2. If B1 is executed again (directly or indirectly) then the second execution of B1 will not start before the old execution using the old package is finished. However, this is not really a problem. The solution described above allows to deploy database code efficiently. It is however necessary to remember how this mechanism works and what the limitations are. A naming convention needs also to be developed (for example adding the result of TO_CHAR(sysdate, ‘$MM_DD’), which is dollar sing, month and day of deployment, to the package name). It is also necessary to give other schemas the same grant to new package version as were given to the old package version.

You May Also Like

[:en] Operational problems with Zookeeper

This post is a summary of what has been presented by Kathleen Ting on StrangeLoop conference. You can watch the original here: http://www.infoq.com/presentations/Misconfiguration-ZooKeeper I've decided to put this selection here for quick reference. ...This post is a summary of what has been presented by Kathleen Ting on StrangeLoop conference. You can watch the original here: http://www.infoq.com/presentations/Misconfiguration-ZooKeeper I've decided to put this selection here for quick reference. ...

Clojure web development – state of the art

It’s now more than a year that I’m getting familiar with Clojure and the more I dive into it, the more it becomes the language. Once you defeat the “parentheses fear”, everything else just makes the difference: tooling, community, good engineering practices. So it’s now time for me to convince others. In this post I’ll try to walktrough a simple web application from scratch to show key tools and libraries used to develop with Clojure in late 2015.

Note for Clojurians: This material is rather elementary and may be useful for you if you already know Clojure a bit but never did anything bigger than hello world application.

Note for Java developers: This material shows how to replace Spring, Angular, grunt, live-reload with a bunch of Clojure tools and libraries and a bit of code.

The repo with final code and individual steps is here.

Bootstrap

I think all agreed that component is the industry standard for managing lifecycle of Clojure applications. If you are a Java developer you may think of it as a Spring (DI) replacement - you declare dependencies between “components” which are resolved on “system” startup. So you just say “my component needs a repository/database pool” and component library “injects” it for you.

To keep things simple I like to start with duct web app template. It’s a nice starter component application following the 12-factor philosophy. So let’s start with it:

lein new duct clojure-web-app +example

The +example parameter tells duct to create an example endpoint with HTTP routes - this would be helpful. To finish bootstraping run lein setup inside clojure-web-app directory.

Ok, let’s dive into the code. Component and injection related code should be in system.clj file:

(defn new-system [config]
  (let [config (meta-merge base-config config)]
    (-> (component/system-map
         :app  (handler-component (:app config))
         :http (jetty-server (:http config))
         :example (endpoint-component example-endpoint))
        (component/system-using
         {:http [:app]
          :app  [:example]
          :example []}))))

In the first section you instantiate components without dependencies, which are resolved in the second section. So in this example, “http” component (server) requires “app” (application abstraction), which in turn is injected with “example” (actual routes). If your component needs others, you just can get then by names (precisely: by Clojure keywords).

To start the system you must fire a REPL - interactive environment running within context of your application:

lein repl

After seeing prompt type (go). Application should start, you can visit http://localhost:3000 to see some example page.

A huge benefit of using component approach is that you get fully reloadable application. When you change literally anything - configuration, endpoints, implementation, you can just type (reset) in REPL and your application is up-to-date with the code. It’s a feature of the language, no JRebel, Spring-reloaded needed.

Adding REST endpoint

Ok, in the next step let’s add some basic REST endpoint returning JSON. We need to add 2 dependencies in project.clj file:

:dependencies
 ...
  [ring/ring-json "0.3.1"]
  [cheshire "5.1.1"]

Ring-json adds support for JSON for your routes (in ring it’s called middleware) and cheshire is Clojure JSON parser (like Jackson in Java). Modifying project dependencies if one of the few tasks that require restarting the REPL, so hit CTRL-C and type lein repl again.

To configure JSON middleware we have to add wrap-json-body and wrap-json-response just before wrap-defaults in system.clj:

(:require 
 ...
 [ring.middleware.json :refer [wrap-json-body wrap-json-response]])

(def base-config
   {:app {:middleware [[wrap-not-found :not-found]
                      [wrap-json-body {:keywords? true}]
                      [wrap-json-response]
                      [wrap-defaults :defaults]]

And finally, in endpoint/example.clj we must add some route with JSON response:

(:require 
 ...
 [ring.util.response :refer [response]]))

(defn example-endpoint [config]
  (routes
    (GET "/hello" [] (response {:hello "world"}))
    ...

Reload app with (reset) in REPL and test new route with curl:

curl -v http://localhost:3000/hello

< HTTP/1.1 200 OK
< Date: Tue, 15 Sep 2015 21:17:37 GMT
< Content-Type: application/json; charset=utf-8
< Set-Cookie: ring-session=37c337fb-6bbc-4e65-a060-1997718d03e0;Path=/;HttpOnly
< X-XSS-Protection: 1; mode=block
< X-Frame-Options: SAMEORIGIN
< X-Content-Type-Options: nosniff
< Content-Length: 151
* Server Jetty(9.2.10.v20150310) is not blacklisted
< Server: Jetty(9.2.10.v20150310)
<
* Connection #0 to host localhost left intact
{"hello": "world"}

It works! In case of any problems you can find working version in this commit.

Adding frontend with figwheel

Coding backend in Clojure is great, but what about the frontend? As you may already know, Clojure could be compiled not only to JVM bytecode, but also to Javascript. This may sound familiar if you used e.g. Coffescript. But ClojureScript philosophy is not only to provide some syntax sugar, but improve your development cycle with great tooling and fully interactive development. Let’s see how to achieve it.

The best way to introduce ClojureScript to a project is figweel. First let’s add fighweel plugin and configuration to project.clj:

:plugins
   ...
   [lein-figwheel "0.3.9"]

And cljsbuild configuration:

:cljsbuild
    {:builds [{:id "dev"
               :source-paths ["src-cljs"]
               :figwheel true
               :compiler {:main       "clojure-web-app.core"
                          :asset-path "js/out"
                          :output-to  "resources/public/js/clojure-web-app.js"
                          :output-dir "resources/public/js/out"}}]}

In short this tells ClojureScript compiler to take sources from src-cljs with figweel support and but resulting JavaScript into resources/public/js/clojure-web-app.js file. So we need to include this file in a simple HTML page:

<!DOCTYPE html>
<head>
</head>
<body>
  <div id="main">
  </div>
  <script src="js/clojure-web-app.js" type="text/javascript"></script>
</body>
</html>

To serve this static file we need to change some defaults and add corresponding route. In system.clj change api-defaults to site-defaults both in require section and base-config function. In example.clj add following route:

(GET "/" [] (io/resource "public/index.html")

Again (reset) in REPL window should reload everything.

But where is our ClojureScript source file? Let’s create file core.cljs in src-cljs/clojure-web-app directory:

(ns ^:figwheel-always clojure-web-app.core)

(enable-console-print!)

(println "hello from clojurescript")

Open another terminal and run lein fighweel. It should compile ClojureScript and print ‘Prompt will show when figwheel connects to your application’. Open http://localhost:3000. Fighweel window should prompt:

To quit, type: :cljs/quit
cljs.user=>

Type (js/alert "hello"). Boom! If everything worked you should see and alert in your browser. Open developers console in your browser. You should see hello from clojurescript printed on the console. Change it in core.cljs to (println "fighweel rocks") and save the file. Without reloading the page your should see updated message. Figweel rocks! Again, in case of any problems, refer to this commit.

In the next post I’ll show how to fetch data from MongoDB, serve it with REST to the broser and write ReactJs/Om components to render it. Stay tuned!