Spring Boot 2.0 HTTP request metrics with Micrometer

Introduction

Brand new Spring Boot 2.0 has just been released and TouKs couldn’t wait to try it in the production. One of the newly added features that we investigated was metrics system based on Micrometer library (https://micrometer.io/). In this post I will cover some of our experiences with this so far.

The goal was to get basic HTTP request metrics, report them to InfluxDB and draw some fancy graphs in Grafana. In particular we needed:

  • Throughput – total number of requests in given time unit
  • Response status statistics – how many 200-like and 500-like response occurred
  • Response time statistics: mean, median, percentiles

What was wrong with Dropwizard metrics

Nothing that I am aware of. Metrics Spring integration however is a different story….

Last stable release of Metrics Spring (v. 3.1.3) was in late 2015 and it was compatible with Dropwizard Metrics (v. 3.1.2). From this time Dropwizard Metrics moved to version 4 and 5, but Metrics Spring literally died. This causes a couple of rather unpleasant facts:

  • There are some known bugs that will never be solved
  • You can’t benefit from Dropwizard Metrics improvements
  • Sooner or later you will use a library that depends on a different version of Dropwizard Metrics and it will hurt

As an InfluxDB user I was also facing some problems with reporting tags. After a couple of tries we ended up using an obscure Graphite interface that was luckily compatible with Influx.

Let’s turn on the metrics

Adding metrics to your Spring Boot project can be done in three very simple steps. First add a dependency to micrometer-registry-xxx, where xxx is your favourite metrics storage. In our case:

<dependency>
  <groupId>io.micrometer</groupId>
  <artifactId>micrometer-registry-influx</artifactId>
</dependency>

 

Now it is time for just a little bit of configuration in application.yml:

management:
  metrics:
    export:
      influx:
        uri: http://localhost:8086
        db: services
        step: 5s  ### <- (1)

 

And a proper configuration bean:

@Configuration public class MetricsConfig {
    private static final Duration HISTOGRAM_EXPIRY = Duration.ofMinutes(10);
    
    private static final Duration STEP = Duration.ofSeconds(5);
    
    @Value
    ("${host_id}") private String hostId;
    
    @Value
    ("${service_id}") private String serviceId;
    
    @Bean 
    public MeterRegistryCustomizer < MeterRegistry > metricsCommonTags() { // (2)
        return registry - > registry.config()
        .commonTags("host", hostId, "service", serviceId) // (3)
        .meterFilter(MeterFilter.deny(id - > { // (4)
                String uri = id.getTag("uri");
                return uri != null && uri.startsWith("/swagger");
            }))
            .meterFilter(new MeterFilter() {
                @Override 
                public DistributionStatisticConfig configure(Meter.Id id, DistributionStatisticConfig config) {
                    return config.merge(DistributionStatisticConfig.builder().percentilesHistogram(true).percentiles(0.5, 0.75, 0.95) // (5)
                    .expiry(HISTOGRAM_EXPIRY) // (6)
                    .bufferLength((int)(HISTOGRAM_EXPIRY.toMillis() / STEP.toMillis())) // (7)
                    .build());
                }
            });
    }
}

 

Simple as that. For sure it is not the minimal working example, but I believe some of our ideas are worth mentioning.

Dive into configuration

Config is rather self-explanatory, but let’s take a look at couple of interesting features.

(1) Step defines how often data is sent by reporter. This value should be related to your expected traffic, because you don’t want to see 90% of zeros.

(2) Be aware that there can be many reporters sharing the same config. Customising each behaviour can be done by using more specific type parameter e.g. InfluxMeterRegistry.

(3) Tags that will be added to every metric. As you can see it’s very handy for identifying hosts in a cluster.

(4) Skipping not important endpoints will limit unwanted data.

(5) A list of percentiles you would like to track

(6)(7) Histograms are calculated for some defined time window where more recent values have bigger impact on final value. The bigger time window you choose, the more accurate statistics are, but the less sudden will be changes of percentile value in case of very big or very small response time. It is also very important to increase buffer length as you increase expiry time.

Afterthought

We believe that migrating to Micrometer is worth spending time as configuration and reporting becomes simpler. The only thing that surprised us was reporting rate of throughput and status counts rather than cumulative values. But this is another story to be told…

Special thanks to Arek Burdach for support.

You May Also Like

Zookeeper + Curator = Distributed sync

An application developed for one of my recent projects at TouK involved multiple servers. There was a requirement to ensure failover for the system’s components. Since I had already a few separate components I didn’t want to add more of that, and since there already was a Zookeeper ensemble running - required by one of the services, I’ve decided to go that way with my solution.

What is Zookeeper?

Just a crude distributed synchronization framework. However, it implements Paxos-style algorithms (http://en.wikipedia.org/wiki/Paxos_(computer_science)) to ensure no split-brain scenarios would occur. This is quite an important feature, since I don’t have to care about that kind of problems while using this app. You just need to create an ensemble of a couple of its instances - to ensure high availability. It is basically a virtual filesystem, with files, directories and stuff. One could ask why another filesystem? Well this one is a rather special one, especially for distributed systems. The reason why creating all the locking algorithms on top of Zookeeper is easy is its Ephemeral Nodes - which are just files that exist as long as connection for them exists. After it disconnects - such file disappears.

With such paradigms in place it’s fairly easy to create some high level algorithms for synchronization.

Having that in place, it can safely integrate multiple services ensuring loose coupling in a distributed way.

Zookeeper from developer’s POV

With all the base services for Zookeeper started, it seems there is nothing else, than just connect to it and start implementing necessary algorithms. Unfortunately, the API is quite basic and offers files and directories abstractions with the addition of different node type (file types) - ephemeral and sequence. It is also possible to watch a node for changes.

Using bare Zookeeper is hard!

Creating connections is tedious - and there is lots of things to take care of. Handling an established connection is hard - when establishing connection to ensemble, it’s necessary to negotiate a session also. During the whole process a number of exceptions can occur - these are “recoverable” exceptions, that can be gracefully handled and not break the connection.

    class="c8"><span>So, Zookeeper API is hard.</span></p><p class="c1"><span></span></p><p class="c8"><span>Even if one is proficient with that API, then there come recipes. The reason for using Zookeeper is to be able to implement some more sophisticated algorithms on top of it. Unfortunately those aren&rsquo;t trivial and it is again quite hard to implement them without bugs.</span>

And since distributed systems are hard, why would anyone want another difficult to handle tool?

Enter Curator

<p
    class="c8"><span>Happily, guys from Netflix implemented a nice abstraction for dealing with Zookeeper internals. They called it Curator and use it extensively in the company&rsquo;s environment. Curator offers consistent API for Zookeeper&rsquo;s functionality. It even implements a couple of recipes for distributed systems.</span>

File read/write

<p
    class="c8"><span>The basic use of Zookeeper is as a distributed configuration repository. For this scenario I only need read/write capabilities, to be able to write and read files from the Zookeeper filesystem. This code snippet writes a sample json to a file on ZK filesystem.</span>

<a href="#"
                                                                                                  name="0"></a>

EnsurePath ensurePath = new EnsurePath(markerPath);
ensurePath.ensure(client.getZookeeperClient());
String json = “...”;
if (client.checkExists().forPath(statusFile(core)) != null)
     client.setData().forPath(statusFile(core), json.getBytes());
else
     client.create().forPath(statusFile(core), json.getBytes());


Distributed locking

Having multiple systems there may be a need of using an exclusive lock for some resource, or perhaps some big system requires it’s components to synchronize based on locks. This “recipe” is an ideal match for those situations.

ref="#"
                                                                                    name="b0329bbbf14b79ffaba1139881914aea887ef6a3"></a>



lock = new InterProcessSemaphoreMutex(client, lockPath);
lock.acquire(5, TimeUnit.MINUTES);
… do sth …
lock.release();


 (from https://github.com/zygm0nt/curator-playground/blob/master/src/main/java/pl/touk/curator/LockingRemotely.java)

Sevice Advertisement

<p

    class="c8"><span>This is quite an interesting use case. With many small services on different servers it is not wise to exchange ip addresses and ports between them. When some of those services may go down, while other will try to replace them - the task gets even harder. </span>

That’s why, with Zookeeper in place, it can be utilised as a registry of existing services.

If a service starts, it registers into the ServiceRegistry, offering basic information, like it’s purpose, role, address, and port.

Services that want to use a specific kind of service request an access to some instance. This way of configuring easily decouples services from their configuration.

Basically this scenario needs ? steps:

<span>1. Service starts and registers its presence (</span><span class="c5"><a class="c0"
                                                                               href="https://github.com/zygm0nt/curator-playground/blob/master/src/main/java/pl/touk/curator/WorkerAdvertiser.java#L44">https://github.com/zygm0nt/curator-playground/blob/master/src/main/java/pl/touk/curator/WorkerAdvertiser.java#L44</a></span><span>)</span><span>:</span>



ServiceDiscovery discovery = getDiscovery();
            discovery.start();
            ServiceInstance si = getInstance();
            log.info(si);
            discovery.registerService(si);



2. Another service - on another host or in another JVM on the same machine tries to discover who is implementing the service (https://github.com/zygm0nt/curator-playground/blob/master/src/main/java/pl/touk/curator/WorkerFinder.java#L50):

<a href="#"

                                                                                                  name="3"></a>

instances = discovery.queryForInstances(serviceName);

The whole concept here is ridiculously simple - the service advertising its presence just stores a file with its whereabouts. The service that is looking for service providers just look into specific directory and read stored definitions.

In my example, the structure advertised by services looks like this (+ some getters and constructor - the rest is here: https://github.com/zygm0nt/curator-playground/blob/master/src/main/java/pl/touk/model/WorkerMetadata.java):



public final class WorkerMetadata {
    private final UUID workerId;
    private final String listenAddress;
    private final int listenPort;
}


Source code

<p

    class="c8"><span>The above recipes are available in Curator library (</span><span class="c5"><a class="c0"
                                                                                                    href="http://curator.incubator.apache.org/">http://curator.incubator.apache.org/</a></span><span>). Recipes&rsquo;
usage examples are in my github repo at </span><span class="c5"><a class="c0"
                                                                   href="https://github.com/zygm0nt/curator-playground">https://github.com/zygm0nt/curator-playground</a></span>

Conclusion

<p
    class="c8"><span>If you&rsquo;re in need of a reliable platform for exchanging data and managing synchronization, and you need to do it in a distributed fashion - just choose Zookeeper. Then add Curator for the ease of using it. Enjoy!</span>


  1. image comes from: http://www.flickr.com/photos/jfgallery/2993361148
  2. all source code fragments taken from this repo: https://github.com/zygm0nt/curator-playground

An application developed for one of my recent projects at TouK involved multiple servers. There was a requirement to ensure failover for the system’s components. Since I had already a few separate components I didn’t want to add more of that, and since there already was a Zookeeper ensemble running - required by one of the services, I’ve decided to go that way with my solution.

What is Zookeeper?

Just a crude distributed synchronization framework. However, it implements Paxos-style algorithms (http://en.wikipedia.org/wiki/Paxos_(computer_science)) to ensure no split-brain scenarios would occur. This is quite an important feature, since I don’t have to care about that kind of problems while using this app. You just need to create an ensemble of a couple of its instances - to ensure high availability. It is basically a virtual filesystem, with files, directories and stuff. One could ask why another filesystem? Well this one is a rather special one, especially for distributed systems. The reason why creating all the locking algorithms on top of Zookeeper is easy is its Ephemeral Nodes - which are just files that exist as long as connection for them exists. After it disconnects - such file disappears.

With such paradigms in place it’s fairly easy to create some high level algorithms for synchronization.

Having that in place, it can safely integrate multiple services ensuring loose coupling in a distributed way.

Zookeeper from developer’s POV

With all the base services for Zookeeper started, it seems there is nothing else, than just connect to it and start implementing necessary algorithms. Unfortunately, the API is quite basic and offers files and directories abstractions with the addition of different node type (file types) - ephemeral and sequence. It is also possible to watch a node for changes.

Using bare Zookeeper is hard!

Creating connections is tedious - and there is lots of things to take care of. Handling an established connection is hard - when establishing connection to ensemble, it’s necessary to negotiate a session also. During the whole process a number of exceptions can occur - these are “recoverable” exceptions, that can be gracefully handled and not break the connection.

    class="c8"><span>So, Zookeeper API is hard.</span></p><p class="c1"><span></span></p><p class="c8"><span>Even if one is proficient with that API, then there come recipes. The reason for using Zookeeper is to be able to implement some more sophisticated algorithms on top of it. Unfortunately those aren&rsquo;t trivial and it is again quite hard to implement them without bugs.</span>

And since distributed systems are hard, why would anyone want another difficult to handle tool?

Enter Curator

<p
    class="c8"><span>Happily, guys from Netflix implemented a nice abstraction for dealing with Zookeeper internals. They called it Curator and use it extensively in the company&rsquo;s environment. Curator offers consistent API for Zookeeper&rsquo;s functionality. It even implements a couple of recipes for distributed systems.</span>

File read/write

<p
    class="c8"><span>The basic use of Zookeeper is as a distributed configuration repository. For this scenario I only need read/write capabilities, to be able to write and read files from the Zookeeper filesystem. This code snippet writes a sample json to a file on ZK filesystem.</span>

<a href="#"
                                                                                                  name="0"></a>

EnsurePath ensurePath = new EnsurePath(markerPath);
ensurePath.ensure(client.getZookeeperClient());
String json = “...”;
if (client.checkExists().forPath(statusFile(core)) != null)
     client.setData().forPath(statusFile(core), json.getBytes());
else
     client.create().forPath(statusFile(core), json.getBytes());


Distributed locking

Having multiple systems there may be a need of using an exclusive lock for some resource, or perhaps some big system requires it’s components to synchronize based on locks. This “recipe” is an ideal match for those situations.

ref="#"
                                                                                    name="b0329bbbf14b79ffaba1139881914aea887ef6a3"></a>



lock = new InterProcessSemaphoreMutex(client, lockPath);
lock.acquire(5, TimeUnit.MINUTES);
… do sth …
lock.release();


 (from https://github.com/zygm0nt/curator-playground/blob/master/src/main/java/pl/touk/curator/LockingRemotely.java)

Sevice Advertisement

<p

    class="c8"><span>This is quite an interesting use case. With many small services on different servers it is not wise to exchange ip addresses and ports between them. When some of those services may go down, while other will try to replace them - the task gets even harder. </span>

That’s why, with Zookeeper in place, it can be utilised as a registry of existing services.

If a service starts, it registers into the ServiceRegistry, offering basic information, like it’s purpose, role, address, and port.

Services that want to use a specific kind of service request an access to some instance. This way of configuring easily decouples services from their configuration.

Basically this scenario needs ? steps:

<span>1. Service starts and registers its presence (</span><span class="c5"><a class="c0"
                                                                               href="https://github.com/zygm0nt/curator-playground/blob/master/src/main/java/pl/touk/curator/WorkerAdvertiser.java#L44">https://github.com/zygm0nt/curator-playground/blob/master/src/main/java/pl/touk/curator/WorkerAdvertiser.java#L44</a></span><span>)</span><span>:</span>



ServiceDiscovery discovery = getDiscovery();
            discovery.start();
            ServiceInstance si = getInstance();
            log.info(si);
            discovery.registerService(si);



2. Another service - on another host or in another JVM on the same machine tries to discover who is implementing the service (https://github.com/zygm0nt/curator-playground/blob/master/src/main/java/pl/touk/curator/WorkerFinder.java#L50):

<a href="#"

                                                                                                  name="3"></a>

instances = discovery.queryForInstances(serviceName);

The whole concept here is ridiculously simple - the service advertising its presence just stores a file with its whereabouts. The service that is looking for service providers just look into specific directory and read stored definitions.

In my example, the structure advertised by services looks like this (+ some getters and constructor - the rest is here: https://github.com/zygm0nt/curator-playground/blob/master/src/main/java/pl/touk/model/WorkerMetadata.java):



public final class WorkerMetadata {
    private final UUID workerId;
    private final String listenAddress;
    private final int listenPort;
}


Source code

<p

    class="c8"><span>The above recipes are available in Curator library (</span><span class="c5"><a class="c0"
                                                                                                    href="http://curator.incubator.apache.org/">http://curator.incubator.apache.org/</a></span><span>). Recipes&rsquo;
usage examples are in my github repo at </span><span class="c5"><a class="c0"
                                                                   href="https://github.com/zygm0nt/curator-playground">https://github.com/zygm0nt/curator-playground</a></span>

Conclusion

<p
    class="c8"><span>If you&rsquo;re in need of a reliable platform for exchanging data and managing synchronization, and you need to do it in a distributed fashion - just choose Zookeeper. Then add Curator for the ease of using it. Enjoy!</span>


  1. image comes from: http://www.flickr.com/photos/jfgallery/2993361148
  2. all source code fragments taken from this repo: https://github.com/zygm0nt/curator-playground