MapStruct mapper injection in OSGi Blueprint

What is MapStruct?According to MapStruct website:MapStruct is a code generator that greatly simplifies the implementation of mappings between Java bean types based on a convention over configuration approach. The generated mapping code uses plain metho…

What is MapStruct?

According to MapStruct website:

MapStruct is a code generator that greatly simplifies the implementation of mappings between Java bean types based on a convention over configuration approach. The generated mapping code uses plain method invocations and thus is fast, type-safe and easy to understand.

Inject MapStruct mapper in Blueprint OSGi

Such mappings are sometimes necessary in our integration projects. We also use OSGi to create our applications and Blueprint for dependency injection. Blueprin Maven Plugin makes it very easy to use, providing annotation support.

MapStruct supports component models like cdi, spring and jsr330, so generated classes could be used as beans. Fortunately, Blueprint Maven Plugin uses annotations from JSR 330, such as Singleton or Named.

The only thing we have to do is to add property componentModel with value jsr330 to a mapping interface:

@Mapper(componentModel = "jsr330")
public interface PersonMapper {
    Person toDomain(PersonDto personDto);
}

and now we can inject PersonMapper to our beans:

@Singleton
@AllArgsConstructor
public class CreatePersonHandler {
    private final PersonRepository personRepository;
    private final PersonMapper personMapper;

    // ...
}

Blueprint Maven Plugin will generate an XML file with bean PersonMapperImpl and inject it to CreatePersonHandler:

<?xml version="1.0" encoding="UTF-8"?><blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0">
    <bean id="createPersonHandler" class="com.github.alien11689.osgi.mapstructblueprint.CreatePersonHandler">
        <argument ref="personRepository"/>
        <argument ref="personMapperImpl"/>
    </bean>
    <bean id="personMapperImpl" class="com.github.alien11689.osgi.mapstructblueprint.PersonMapperImpl"/>
    <bean id="personRepository" class="com.github.alien11689.osgi.mapstructblueprint.PersonRepository"/>
</blueprint>

Generate all mappers with JSR 330 annotations

If you have multiple mappers and all of them should be beans, then you can simply add one compiler argument in configuration and all the mappers will have @Singleton and @Named annotations by default.

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    ...
    <build>
        <plugins>
            ...
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-compiler-plugin</artifactId>
                <version>${maven-compiler-plugin.version}</version>
                <configuration>
                    <source>1.8</source>
                    <target>1.8</target>
                    <compilerArgs>
                        <compilerArg>
                             -Amapstruct.defaultComponentModel=jsr330
                        </compilerArg>
                    </compilerArgs>
                </configuration>
            </plugin>
            ...
        </plugins>
    </build>
</project>

Try it on your own

The code is available at Github.

You May Also Like

HISE

HISE stands for Human Interactions Service Engine.I have recently posted a proposal, which was accepted by Apache ODE PMC, which means the development will start soon.If you are interested in this project, you are welcome to join us.HISE stands for Human Interactions Service Engine.I have recently posted a proposal, which was accepted by Apache ODE PMC, which means the development will start soon.If you are interested in this project, you are welcome to join us.

Integration testing custom validation constraints in Jersey 2

I recently joined a team trying to switch a monolithic legacy system into set of RESTful services in Java. They decided to use latest 2.x version of Jersey as a REST container which was not a first choice for me, since I’m not a big fan of JSR-* specs. But now I must admit that JAX-RS 2.x is doing things right: requires almost zero boilerplate code, support auto-discovery of features and prefers convention over configuration like other modern frameworks. Since the spec is still young, it’s hard to find good tutorials and kick-off projects with some working code. I created jersey2-starter project on GitHub which can be used as starting point for your own production-ready RESTful service. In this post I’d like to cover how to implement and integration test your own validation constraints of REST resources.

Custom constraints

One of the issues which bothers me when coding REST in Java is littering your class model with annotations. Suppose you want to build a simple Todo list REST service, when using Jackson, validation and Spring Data, you can easily end up with this as your entity class:

@Document
public class Todo {
    private Long id;
    @NotNull
    private String description;
    @NotNull
    private Boolean completed;
    @NotNull
    private DateTime dueDate;

    @JsonCreator
    public Todo(@JsonProperty("description") String description, @JsonProperty("dueDate") DateTime dueDate) {
        this.description = description;
        this.dueDate = dueDate;
        this.completed = false;
    }
    // getters and setters
}

Your domain model is now effectively blured by messy annotations almost everywhere. Let’s see what we can do with validation constraints (@NotNulls). Some may say that you could introduce some DTO layer with own validation rules, but it conflicts for me with pure REST API design, which stands that you operate on resources which should map to your domain classes. On the other hand - what does it mean that Todo object is valid? When you create a Todo you should provide a description and due date, but what when you’re updating? You should be able to change any of description, due date (postponing) and completion flag (marking as done) - but you should provide at least one of these as valid modification. So my idea is to introduce custom validation constraints, different ones for creation and modification:

@Target({TYPE, PARAMETER})
@Retention(RUNTIME)
@Constraint(validatedBy = ValidForCreation.Validator.class)
public @interface ValidForCreation {
    //...
    class Validator implements ConstraintValidator<ValidForCreation, Todo> {
    /...
        @Override
        public boolean isValid(Todo todo, ConstraintValidatorContext constraintValidatorContext) {
            return todo != null
                && todo.getId() == null
                && todo.getDescription() != null
                && todo.getDueDate() != null;
        }
    }
}

@Target({TYPE, PARAMETER})
@Retention(RUNTIME)
@Constraint(validatedBy = ValidForModification.Validator.class)
public @interface ValidForModification {
    //...
    class Validator implements ConstraintValidator<ValidForModification, Todo> {
    /...
        @Override
        public boolean isValid(Todo todo, ConstraintValidatorContext constraintValidatorContext) {
            return todo != null
                && todo.getId() == null
                && (todo.getDescription() != null || todo.getDueDate() != null || todo.isCompleted() != null);
        }
    }
}

And now you can move validation annotations to the definition of a REST endpoint:

@POST
@Consumes(APPLICATION_JSON)
public Response create(@ValidForCreation Todo todo) {...}

@PUT
@Consumes(APPLICATION_JSON)
public Response update(@ValidForModification Todo todo) {...}

And now you can remove those NotNulls from your model.

Integration testing

There are in general two approaches to integration testing:

  • test is being run on separate JVM than the app, which is deployed on some other integration environment
  • test deploys the application programmatically in the setup block.

Both of these have their pros and cons, but for small enough servoces, I personally prefer the second approach. It’s much easier to setup and you have only one JVM started, which makes debugging really easy. You can use a generic framework like Arquillian for starting your application in a container environment, but I prefer simple solutions and just use emdedded Jetty. To make test setup 100% production equivalent, I’m creating full Jetty’s WebAppContext and have to resolve all runtime dependencies for Jersey auto-discovery to work. This can be simply achieved with Maven resolved from Shrinkwrap - an Arquillian subproject:

    WebAppContext webAppContext = new WebAppContext();
    webAppContext.setResourceBase("src/main/webapp");
    webAppContext.setContextPath("/");
    File[] mavenLibs = Maven.resolver().loadPomFromFile("pom.xml")
                .importCompileAndRuntimeDependencies()
                .resolve().withTransitivity().asFile();
    for (File file: mavenLibs) {
        webAppContext.getMetaData().addWebInfJar(new FileResource(file.toURI()));
    }
    webAppContext.getMetaData().addContainerResource(new FileResource(new File("./target/classes").toURI()));

    webAppContext.setConfigurations(new Configuration[] {
        new AnnotationConfiguration(),
        new WebXmlConfiguration(),
        new WebInfConfiguration()
    });
    server.setHandler(webAppContext);

(this Stackoverflow thread inspired me a lot here)

Now it’s time for the last part of the post: parametrizing our integration tests. Since we want to test validation constraints, there are many edge paths to check (and make your code coverage close to 100%). Writing one test per each case could be a bad idea. Among the many solutions for JUnit I’m most convinced to the Junit Params by Pragmatists team. It’s really simple and have nice concept of JQuery-like helper for creating providers. Here is my tests code (I’m also using builder pattern here to create various kinds of Todos):

@Test
@Parameters(method = "provideInvalidTodosForCreation")
public void shouldRejectInvalidTodoWhenCreate(Todo todo) {
    Response response = createTarget().request().post(Entity.json(todo));

    assertThat(response.getStatus()).isEqualTo(BAD_REQUEST.getStatusCode());
}

private static Object[] provideInvalidTodosForCreation() {
    return $(
        new TodoBuilder().withDescription("test").build(),
        new TodoBuilder().withDueDate(DateTime.now()).build(),
        new TodoBuilder().withId(123L).build(),
        new TodoBuilder().build()
    );
}

OK, enough of reading, feel free to clone the project and start writing your REST services!

I recently joined a team trying to switch a monolithic legacy system into set of RESTful services in Java. They decided to use latest 2.x version of Jersey as a REST container which was not a first choice for me, since I’m not a big fan of JSR-* specs. But now I must admit that JAX-RS 2.x is doing things right: requires almost zero boilerplate code, support auto-discovery of features and prefers convention over configuration like other modern frameworks. Since the spec is still young, it’s hard to find good tutorials and kick-off projects with some working code. I created jersey2-starter project on GitHub which can be used as starting point for your own production-ready RESTful service. In this post I’d like to cover how to implement and integration test your own validation constraints of REST resources.

Custom constraints

One of the issues which bothers me when coding REST in Java is littering your class model with annotations. Suppose you want to build a simple Todo list REST service, when using Jackson, validation and Spring Data, you can easily end up with this as your entity class:

@Document
public class Todo {
    private Long id;
    @NotNull
    private String description;
    @NotNull
    private Boolean completed;
    @NotNull
    private DateTime dueDate;

    @JsonCreator
    public Todo(@JsonProperty("description") String description, @JsonProperty("dueDate") DateTime dueDate) {
        this.description = description;
        this.dueDate = dueDate;
        this.completed = false;
    }
    // getters and setters
}

Your domain model is now effectively blured by messy annotations almost everywhere. Let’s see what we can do with validation constraints (@NotNulls). Some may say that you could introduce some DTO layer with own validation rules, but it conflicts for me with pure REST API design, which stands that you operate on resources which should map to your domain classes. On the other hand - what does it mean that Todo object is valid? When you create a Todo you should provide a description and due date, but what when you’re updating? You should be able to change any of description, due date (postponing) and completion flag (marking as done) - but you should provide at least one of these as valid modification. So my idea is to introduce custom validation constraints, different ones for creation and modification:

@Target({TYPE, PARAMETER})
@Retention(RUNTIME)
@Constraint(validatedBy = ValidForCreation.Validator.class)
public @interface ValidForCreation {
    //...
    class Validator implements ConstraintValidator<ValidForCreation, Todo> {
    /...
        @Override
        public boolean isValid(Todo todo, ConstraintValidatorContext constraintValidatorContext) {
            return todo != null
                && todo.getId() == null
                && todo.getDescription() != null
                && todo.getDueDate() != null;
        }
    }
}

@Target({TYPE, PARAMETER})
@Retention(RUNTIME)
@Constraint(validatedBy = ValidForModification.Validator.class)
public @interface ValidForModification {
    //...
    class Validator implements ConstraintValidator<ValidForModification, Todo> {
    /...
        @Override
        public boolean isValid(Todo todo, ConstraintValidatorContext constraintValidatorContext) {
            return todo != null
                && todo.getId() == null
                && (todo.getDescription() != null || todo.getDueDate() != null || todo.isCompleted() != null);
        }
    }
}

And now you can move validation annotations to the definition of a REST endpoint:

@POST
@Consumes(APPLICATION_JSON)
public Response create(@ValidForCreation Todo todo) {...}

@PUT
@Consumes(APPLICATION_JSON)
public Response update(@ValidForModification Todo todo) {...}

And now you can remove those NotNulls from your model.

Integration testing

There are in general two approaches to integration testing:

  • test is being run on separate JVM than the app, which is deployed on some other integration environment
  • test deploys the application programmatically in the setup block.

Both of these have their pros and cons, but for small enough servoces, I personally prefer the second approach. It’s much easier to setup and you have only one JVM started, which makes debugging really easy. You can use a generic framework like Arquillian for starting your application in a container environment, but I prefer simple solutions and just use emdedded Jetty. To make test setup 100% production equivalent, I’m creating full Jetty’s WebAppContext and have to resolve all runtime dependencies for Jersey auto-discovery to work. This can be simply achieved with Maven resolved from Shrinkwrap - an Arquillian subproject:

    WebAppContext webAppContext = new WebAppContext();
    webAppContext.setResourceBase("src/main/webapp");
    webAppContext.setContextPath("/");
    File[] mavenLibs = Maven.resolver().loadPomFromFile("pom.xml")
                .importCompileAndRuntimeDependencies()
                .resolve().withTransitivity().asFile();
    for (File file: mavenLibs) {
        webAppContext.getMetaData().addWebInfJar(new FileResource(file.toURI()));
    }
    webAppContext.getMetaData().addContainerResource(new FileResource(new File("./target/classes").toURI()));

    webAppContext.setConfigurations(new Configuration[] {
        new AnnotationConfiguration(),
        new WebXmlConfiguration(),
        new WebInfConfiguration()
    });
    server.setHandler(webAppContext);

(this Stackoverflow thread inspired me a lot here)

Now it’s time for the last part of the post: parametrizing our integration tests. Since we want to test validation constraints, there are many edge paths to check (and make your code coverage close to 100%). Writing one test per each case could be a bad idea. Among the many solutions for JUnit I’m most convinced to the Junit Params by Pragmatists team. It’s really simple and have nice concept of JQuery-like helper for creating providers. Here is my tests code (I’m also using builder pattern here to create various kinds of Todos):

@Test
@Parameters(method = "provideInvalidTodosForCreation")
public void shouldRejectInvalidTodoWhenCreate(Todo todo) {
    Response response = createTarget().request().post(Entity.json(todo));

    assertThat(response.getStatus()).isEqualTo(BAD_REQUEST.getStatusCode());
}

private static Object[] provideInvalidTodosForCreation() {
    return $(
        new TodoBuilder().withDescription("test").build(),
        new TodoBuilder().withDueDate(DateTime.now()).build(),
        new TodoBuilder().withId(123L).build(),
        new TodoBuilder().build()
    );
}

OK, enough of reading, feel free to clone the project and start writing your REST services!

Micro services on the JVM part 1 – Clojure

Micro services could be a buzzword of 2014 for me. Few months ago I was curious to try Dropwizard framework as a separate backend, but didn’t get the whole idea yet. But then I watched a mind-blowing “Micro-Services Architecture” talk by Fred George. Also, the 4.0 release notes of Spring covers microservices as an important rising trend as well. After 10 years of having SOA in mind, but still developing monoliths, it’s a really tempting idea to try to decouple systems into a set of independently developed and deployed RESTful services.

Micro services could be a buzzword of 2014 for me. Few months ago I was curious to try Dropwizard framework as a separate backend, but didn’t get the whole idea yet. But then I watched a mind-blowing “Micro-Services Architecture” talk by Fred George. Also, the 4.0 release notes of Spring covers microservices as an important rising trend as well. After 10 years of having SOA in mind, but still developing monoliths, it’s a really tempting idea to try to decouple systems into a set of independently developed and deployed RESTful services.