Phonegap / Cordova and cross domain ssl request problem on android.

In one app I have participated, there was a use case: User fill up a form. User submit the form. System send data via https to server and show a response. During development there wasn’t any problem, but when we were going to release production version then some unsuspected situation occurred. I prepare the production version accordingly with standard flow for Android environment: ant release align signing During conduct tests on that version, every time I try to submit the form, a connection error appear. In that situation, at the first you should check whitelist in cordova settings. Every URL you want to connect to, must be explicit type in: res/xml/cordova.xml If whitelist looks fine, the error is most likely caused by inner implementation of Android System. The Android WebView does not allow by default self-signed SSL certs. When app is debug-signed the SSL error is ignored, but if app is release-signed connection to untrusted services is blocked. Workaround You have to remember that secure connection to service with self-signed certificate is risky and unrecommended. But if you know what you are doing there is some workaround of the security problem. Behavior of method CordovaWebViewClient.onReceivedSslError must be changed. Thus add new class extended CordovaWebViewClient and override ‘onReceivedSslError’. I strongly suggest to implement custom onReceiveSslError as secure as possible. I know that the problem occours when app try connect to example.domain.com and in spite of self signed certificate the domain is trusted, so only for that case the SslError is ignored. public class MyWebViewClient extends CordovaWebViewClient {   private static final String TAG = MyWebViewClient.class.getName();   private static final String AVAILABLE_SLL_CN = "example.domain.com";   public MyWebViewClient(DroidGap ctx) {       super(ctx);   }   @Override   public void onReceivedSslError(WebView view, SslErrorHandler handler, android.net.http.SslError error) { String errorSourceCName = error.getCertificate(). getIssuedTo().getCName();       if( AVAILABLE_SLL_CN.equals(errorSourceCName) ) {           Log.i(TAG, "Detect ssl connection error: " + error.toString() + „ so the error is ignored”);           handler.proceed();           return;       }       super.onReceivedSslError(view, handler, error);   }} Next step is forcing yours app to  use custom implementation of WebViewClient. public class Start extends DroidGap{   private static final String TAG = Start.class.getName();   @Override   public void onCreate(Bundle savedInstanceState)   {       super.onCreate(savedInstanceState);       super.setIntegerProperty("splashscreen", R.drawable.splash);       super.init();       MyWebViewClient myWebViewClient = new MyWebViewClient(this);       myWebViewClient.setWebView(this.appView);       this.appView.setWebViewClient(myWebViewClient);        // yours code   }} That is all ypu have to do if minSdk of yours app is greater or equals 8. In older version of Android there is no class android.net.http.SslError So in class MyCordovaWebViewClient class there are errors because compliator doesn’t see SslError class. Fortunately Android is(was) open source, so it is easy to find source of the class. There is no inpediments to ‘upgrade’ app and just add the file to project. I suggest to keep original packages. Thus after all operations the source tree looks like: Class SslError placed in source tree.   Now the app created in release mode can connect via https to services with self-signed SSl certificates.

In one app I have participated, there was a use case:
* User fill up a form.
* User submit the form.
* System send data via https to server and show a response.During development there wasn’t any problem, but when we were going to release production version then some unsuspected situation occurred. I prepare the production version accordingly with standard flow for Android environment:

  • ant release
  • align
  • signingDuring conduct tests on that version, every time I try to submit the form, a connection error appear. In that situation, at the first you should check whitelist in cordova settings. Every URL you want to connect to, must be explicit type in:

    res/xml/cordova.xml
    If whitelist looks fine, the error is most likely caused by inner implementation of Android System. The Android WebView does not allow by default self-signed SSL certs. When app is debug-signed the SSL error is ignored, but if app is release-signed connection to untrusted services is blocked.

Workaround

 

You have to remember that secure connection to service with self-signed certificate is risky and unrecommended. But if you know what you are doing there is some workaround of the security problem. Behavior of method

CordovaWebViewClient.onReceivedSslErrormust be changed.

 

Thus add new class extended CordovaWebViewClient and override ‘onReceivedSslError’. I strongly suggest to implement custom onReceiveSslError as secure as possible. I know that the problem occours when app try connect to example.domain.com and in spite of self signed certificate the domain is trusted, so only for that case the SslError is ignored.

public class MyWebViewClient extends CordovaWebViewClient {

   private static final String TAG = MyWebViewClient.class.getName();
   private static final String AVAILABLE_SLL_CN
= "example.domain.com";

   public MyWebViewClient(DroidGap ctx) {
       super(ctx);
   }

   @Override
   public void onReceivedSslError(WebView view,
SslErrorHandler handler,
android.net.http.SslError error) {

String errorSourceCName = error.getCertificate().
getIssuedTo().getCName();

       if( AVAILABLE_SLL_CN.equals(errorSourceCName) ) {
           Log.i(TAG, "Detect ssl connection error: " +
error.toString() +
„ so the error is ignored”);

           handler.proceed();
           return;
       }

       super.onReceivedSslError(view, handler, error);
   }
}Next step is forcing yours app to  use custom implementation of WebViewClient. public class Start extends DroidGap
{
   private static final String TAG = Start.class.getName();

   @Override
   public void onCreate(Bundle savedInstanceState)
   {
       super.onCreate(savedInstanceState);
       super.setIntegerProperty("splashscreen", R.drawable.splash);
       super.init();

       MyWebViewClient myWebViewClient = new MyWebViewClient(this);
       myWebViewClient.setWebView(this.appView);

       this.appView.setWebViewClient(myWebViewClient);
       
// yours code

   }
}

That is all ypu have to do if minSdk of yours app is greater or equals 8. In older version of Android there is no class android.net.http.SslErrorSo in class MyCordovaWebViewClient class there are errors because compliator doesn’t see SslError class. Fortunately Android is(was) open source, so it is easy to find source of the class. There is no inpediments to ‘upgrade’ app and just add the file to project. I suggest to keep original packages. Thus after all operations the source tree looks like:

Class SslError placed in source tree.

Now the app created in release mode can connect via https to services with self-signed SSl certificates.

You May Also Like

Thought static method can’t be easy to mock, stub nor track? Wrong!

No matter why, no matter is it a good idea. Sometimes one just wants to check or it's necessary to be done. Mock a static method, woot? Impossibru!

In pure Java world it is still a struggle. But Groovy allows you to do that really simple. Well, not groovy alone, but with a great support of Spock.

Lets move on straight to the example. To catch some context we have an abstract for the example needs. A marketing project with a set of offers. One to many.

import spock.lang.Specification

class OfferFacadeSpec extends Specification {

    OfferFacade facade = new OfferFacade()

    def setup() {
        GroovyMock(Project, global: true)
    }

    def 'delegates an add offer call to the domain with proper params'() {
        given:
            Map params = [projId: projectId, name: offerName]

        when:
            Offer returnedOffer = facade.add(params)

        then:
            1 * Project.addOffer(projectId, _) >> { projId, offer -> offer }
            returnedOffer.name == params.name

        where:
            projectId | offerName
            1         | 'an Offer'
            15        | 'whasup!?'
            123       | 'doskonała oferta - kup teraz!'
    }
}
So we test a facade responsible for handling "add offer to the project" call triggered  somewhere in a GUI.
We want to ensure that static method Project.addOffer(long, Offer) will receive correct params when java.util.Map with user form input comes to the facade.add(params).
This is unit test, so how Project.addOffer() works is out of scope. Thus we want to stub it.

The most important is a GroovyMock(Project, global: true) statement.
What it does is modifing Project class to behave like a Spock's mock. 
GroovyMock() itself is a method inherited from SpecificationThe global flag is necessary to enable mocking static methods.
However when one comes to the need of mocking static method, author of Spock Framework advice to consider redesigning of implementation. It's not a bad advice, I must say.

Another important thing are assertions at then: block. First one checks an interaction, if the Project.addOffer() method was called exactly once, with a 1st argument equal to the projectId and some other param (we don't have an object instance yet to assert anything about it).
Right shit operator leads us to the stub which replaces original method implementation by such statement.
As a good stub it does nothing. The original method definition has return type Offer. The stub needs to do the same. So an offer passed as the 2nd argument is just returned.
Thanks to this we can assert about name property if it's equal with the value from params. If no return was designed the name could be checked inside the stub Closure, prefixed with an assert keyword.

Worth of  mentioning is that if you want to track interactions of original static method implementation without replacing it, then you should try using GroovySpy instead of GroovyMock.

Unfortunately static methods declared at Java object can't be treated in such ways. Though regular mocks and whole goodness of Spock can be used to test pure Java code, which is awesome anyway :)No matter why, no matter is it a good idea. Sometimes one just wants to check or it's necessary to be done. Mock a static method, woot? Impossibru!

In pure Java world it is still a struggle. But Groovy allows you to do that really simple. Well, not groovy alone, but with a great support of Spock.

Lets move on straight to the example. To catch some context we have an abstract for the example needs. A marketing project with a set of offers. One to many.

import spock.lang.Specification

class OfferFacadeSpec extends Specification {

    OfferFacade facade = new OfferFacade()

    def setup() {
        GroovyMock(Project, global: true)
    }

    def 'delegates an add offer call to the domain with proper params'() {
        given:
            Map params = [projId: projectId, name: offerName]

        when:
            Offer returnedOffer = facade.add(params)

        then:
            1 * Project.addOffer(projectId, _) >> { projId, offer -> offer }
            returnedOffer.name == params.name

        where:
            projectId | offerName
            1         | 'an Offer'
            15        | 'whasup!?'
            123       | 'doskonała oferta - kup teraz!'
    }
}
So we test a facade responsible for handling "add offer to the project" call triggered  somewhere in a GUI.
We want to ensure that static method Project.addOffer(long, Offer) will receive correct params when java.util.Map with user form input comes to the facade.add(params).
This is unit test, so how Project.addOffer() works is out of scope. Thus we want to stub it.

The most important is a GroovyMock(Project, global: true) statement.
What it does is modifing Project class to behave like a Spock's mock. 
GroovyMock() itself is a method inherited from SpecificationThe global flag is necessary to enable mocking static methods.
However when one comes to the need of mocking static method, author of Spock Framework advice to consider redesigning of implementation. It's not a bad advice, I must say.

Another important thing are assertions at then: block. First one checks an interaction, if the Project.addOffer() method was called exactly once, with a 1st argument equal to the projectId and some other param (we don't have an object instance yet to assert anything about it).
Right shit operator leads us to the stub which replaces original method implementation by such statement.
As a good stub it does nothing. The original method definition has return type Offer. The stub needs to do the same. So an offer passed as the 2nd argument is just returned.
Thanks to this we can assert about name property if it's equal with the value from params. If no return was designed the name could be checked inside the stub Closure, prefixed with an assert keyword.

Worth of  mentioning is that if you want to track interactions of original static method implementation without replacing it, then you should try using GroovySpy instead of GroovyMock.

Unfortunately static methods declared at Java object can't be treated in such ways. Though regular mocks and whole goodness of Spock can be used to test pure Java code, which is awesome anyway :)