Hacking a robot

Previous post have summarized “THE HACKATHON” in TouK. Today we will present one of the projects in greater detail – “Lidar/ROS.org based robot”. Our team wanted to either transport sandwiches or monitor WiFi quality in the office. Not deciding on the final goal we immediately saw that mobile robot platform will be needed in both cases.

Analysis

Some of our coworkers own Xiaomi vacuum cleaners. Such robot can be managed from mobile app which displays accurate map of your premises and allows to select areas that need cleaning. Xiaomi robot looked promising but two problems arose. First, the price is significant. Second, the communication protocol is not open. There are libraries on GitHub which try to reverse engineer the details but quick analysis has shown that we may end up stuck on some irritating problem and fail to realise our goals.

Closer examination of Xiaomi robot has revealed the core piece that allows it to automatically navigate around the house. It is LIDAR – laser distance measurement device. Another brand of Roomba vacuum cleaners relies on camera-like sensor instead. As computer vision seemed more difficult to approach we have decided on using LIDAR to build two-dimensional map of robot’s surroundings and navigate around the office.

Hardware

LIDAR technology is not as cheap as simple ultrasonic distance sensors but we have found two promising solutions on the market: YDLIDAR and RPLIDAR. Both brands are lines of different products with increasing capabilities and prices but the basic ones were within our budget. Quick comparison has shown that parameters of respective lowest-end models are similiar so we decided to order YDLIDAR because it was the quickest to ship from Amazon to Poland.

One thing to note is that core LIDAR component can be acquired for even lower price but such device will have fixed line of sight. Our chosen model, just like the one built into Xiaomi, has full 360 degree rotating head. It makes 5 to 10 rotations per second scanning 5 thousand points in that time. The output data stream contains angle and distance for each measured point.

For our robot we needed a mobile base. Common choice is base with two motorized wheels plus one or two support wheels that freely rotate in all directions giving minimal friction. We discarded that option because such simple bases for amateur constructions have weak motors and we had quite a load to put on top. Professional bases with two powerful motors are expensive. In the end we bought four-wheeled base with independent low-grade DC motors driving each wheel. The wheels are not steerable – turning is done like in a tank. Our kit was also equipped with two motor encoders – devices that measure how many times wheel has rotated – we will try to use that knowledge later.

According to the manufacturer’s data our base can bear 800 grams of load. We have put there:

  • Raspberry Pi 3 B+, the most powerful model available
  • Arduino Uno
  • 4-channel motor shield for Arduino
  • YDLIDAR
  • LiPo battery pack
  • DC voltage regulators

We have decided that our robot should be fully autonomous so all the data processing will happen on-board using Raspberry Pi. It was connected via USB with Arduino which was used to control motors using standard Arduino-compatible controller. We knew that RPi has GPIO pins that can be used to control peripherals like Arduino would but we wanted to separate the concerns and use all the power of RPi for other responsibilities.

Ross robot
Ross robot

Software

We have assembled a mobile base with YDLIDAR mounted on top but YDLIDAR itself cannot build a complete map of our office and navigate around it. We needed algorithms that could interpret incoming data stream of distance measurements and convert it into usable map. We have found the ROS.org project. It is called Robot Operating System but instead of being full OS it is Linux-based framework – collection of tools and algorithms that makes programing robots easier. As hackathon was designed to deliver working products each team was given time to prepare before the main event. We have spent that time on learning ROS and gathering main components for our robot.

ROS is capable of handling LIDAR data, building a map and performing navigation of robot. If some feature is not available in ROS it can be added by coding of a “node” – separate program that communicates with another nodes using “topics” – ordered streams of events. Fortunately, all parts of our use case were already available as standard ROS nodes, topics and event types. YDLIDAR’s manufacturer provided custom ROS-compatible node which handles low-level interaction with device. There is also an Arduino relay library that makes it possible to write Arduino code that directly subscribes and publishes events to ROS topics.

Having written less than 100 lines of ROS nodes’ launch configuration in XML and less that 100 lines of Arduino code, we were able to remote control our robot and see the map on screen. We have used separate notebook which handled joystick controller and displayed a map. The notebook was configured as ROS slave connected over WiFi to ROS master running on RPi. Below we show how simple it was to setup USB joystick controller:

<launch>
  <node pkg="joy"
        type="joy_node"
        name="ross_joy"
        respawn="true" >

    <param name="autorepeat_rate" value="10" />
  </node>

  <node pkg="teleop_twist_joy"
        type="teleop_node"
        name="ross_teleop"
        respawn="true" >

    <param name="scale_linear" value="0.3" />
    <param name="scale_angular" value="0.3" />
  </node>
</launch>

Unexpected problems and spontaneous solutions

During the hackathon days we have experienced some difficulties. As we were not able to test full robot assembly before the main event, some problems have surfaced very late in the process and dirty solutions must have been quickly hacked.

First problem: power source. During initial tests we used 24V DC power source connected to wall power. It had to be calibrated because internal protection cut off the power when current drawn by motors become too high. We also had 12V LiPo battery for final tests and show. Different input voltages were converted by on-board step-down regulators. One has provided 5V needed by RPi, Arduino and YDLIDAR. Second regulator fed 10V to the motors. During the tests it appeared that YDLIDAR cannot be powered from RPi’s USB port because its voltage was not stable enough. In the end we have connected YDLIDAR power input directly to 5V output from appropriate regulator.

Second problem: jerky movement. We thought (because ROS wiki suggested so) that it would be a good design to include PID controller driving the wheels. It is an algorithm that tries to maintain one value (in our case: measured actual speed of wheels) by varying another value that directly influences the first (in our case: power applied to motors). After some tests we have disabled PID controller because it requires fine tuning to behave correctly. As our rotational wheel encoders report only 10 ticks per revolution, the PID was confused by such low measurement resolution and tried to vary motor power too sharply rendering smooth movement impossible. We believe it can be tuned properly but during the hackathon we have setup joystick to directly control motors’ power, and not robot’s target speed, making human operator responsible for adjustments.

Third problem: faulty encoders. Our will to have wheel encoders originated not from possibility to enable PID controller, but from opportunity to increase mapping precision. Knowing how much robot has moved can help to better correlate data from multiple laser scans, producing more accurate map. Unfortunately, one of encoders appeared to work incorrectly, reporting too few ticks per revolution. Not having much time to investigate that we decided to disconnect encoders completely.

Making maps

At the beginning of second day we have already known main limitations of hardware and software and decided that we will use those parts that work predictably. We confirmed that PID controller was not neccessary for our purposes and mapping can be done using laser data only. We decided to enable simplest mapping algorith in ROS – a method called Hector SLAM. We could start first tests.

At first we mapped small room with two desks in it and a glass door. We have put additional objects in the middle to see how their presence would be handled. Everything worked smoothly using default parameters of Hector method. We also confirmed that it is easy to overlay map with additional data coming from sensors – in our case it was simple photoresistor measuring light intensity in the room.

Room
Room

Then we moved onto mapping bigger area – the hall between rooms. There is additional wall dividing it in the middle and a pillar. We added few other objects. During the tests robot was wired to the power source. We tested how to move our bodies around so to not interfere with the measurements. It appeared that after mapping initial fragment it is safe to walk around and Hector algorithm will ignore moving objects. Only after staying for too long in the same place our legs started to be included as part of the map.

Hall
Hall

Final test shows straight corridor. Its map is bended and we are not sure of the cause. It may be related to slow scan rate of YDLIDAR which accumulates error during robot’s movement.

Corridor
Corridor

Future work

Having learnt ROS before the hackathon and solved mostly hardware-related problems during the event, we have shown that map building is possible even with simple setup. We would like to expand the algorithmic part of the solution, enabling our robot to autonomously move in the office environment. Proper navigation components are already available in ROS.

Conclusions

ROS is a powerful tool that can be used both by amateurs and proffesionals. Its sophisticated architecture allows for complex definitions and management of industrial-grade robots, but can also fit in quick and dirty home projects. For us the biggest challenges lied in the hardware layer, but having electronic engineer on the team helped to connect all the parts together. All Ross team members are happy with results and wish to continue the project.

You May Also Like

Multi module Gradle project with IDE support

This article is a short how-to about multi-module project setup with usage of the Gradle automation build tool.

Here's how Rich Seller, a StackOverflow user, describes Gradle:
Gradle promises to hit the sweet spot between Ant and Maven. It uses Ivy's approach for dependency resolution. It allows for convention over configuration but also includes Ant tasks as first class citizens. It also wisely allows you to use existing Maven/Ivy repositories.
So why would one use yet another JVM build tool such as Gradle? The answer is simple: to avoid frustration involved by Ant or Maven.

Short story

I was fooling around with some fresh proof of concept and needed a build tool. I'm pretty familiar with Maven so created project from an artifact, and opened the build file, pom.xml for further tuning.
I had been using Grails with its own build system (similar to Gradle, btw) already for some time up then, so after quite a time without Maven, I looked on the pom.xml and found it to be really repulsive.

Once again I felt clearly: XML is not for humans.

After quick googling I found Gradle. It was still in beta (0.8 version) back then, but it's configured with Groovy DSL and that's what a human likes :)

Where are we

In the time Ant can be met but among IT guerrillas, Maven is still on top and couple of others like for example Ivy conquer for the best position, Gradle smoothly went into its mature age. It's now available in 1.3 version, released at 20th of November 2012. I'm glad to recommend it to anyone looking for relief from XML configured tools, or for anyone just looking for simple, elastic and powerful build tool.

Lets build

I have already written about basic project structure so I skip this one, reminding only the basic project structure:
<project root>

├── build.gradle
└── src
├── main
│ ├── java
│ └── groovy

└── test
├── java
└── groovy
Have I just referred myself for the 1st time? Achievement unlocked! ;)

Gradle as most build tools is run from a command line with parameters. The main parameter for Gradle is a 'task name', for example we can run a command: gradle build.
There is no 'create project' task, so the directory structure has to be created by hand. This isn't a hassle though.
Java and groovy sub-folders aren't always mandatory. They depend on what compile plugin is used.

Parent project

Consider an example project 'the-app' of three modules, let say:
  1. database communication layer
  2. domain model and services layer
  3. web presentation layer
Our project directory tree will look like:
the-app

├── dao-layer
│ └── src

├── domain-model
│ └── src

├── web-frontend
│ └── src

├── build.gradle
└── settings.gradle
the-app itself has no src sub-folder as its purpose is only to contain sub-projects and build configuration. If needed it could've been provided with own src though.

To glue modules we need to fill settings.gradle file under the-app directory with a single line of content specifying module names:
include 'dao-layer', 'domain-model', 'web-frontend'
Now the gradle projects command can be executed to obtain such a result:
:projects

------------------------------------------------------------
Root project
------------------------------------------------------------

Root project 'the-app'
+--- Project ':dao-layer'
+--- Project ':domain-model'
\--- Project ':web-frontend'
...so we know that Gradle noticed the modules. However gradle build command won't run successful yet because build.gradle file is still empty.

Sub project

As in Maven we can create separate build config file per each module. Let say we starting from DAO layer.
Thus we create a new file the-app/dao-layer/build.gradle with a line of basic build info (notice the new build.gradle was created under sub-project directory):
apply plugin: 'java'
This single line of config for any of modules is enough to execute gradle build command under the-app directory with following result:
:dao-layer:compileJava
:dao-layer:processResources UP-TO-DATE
:dao-layer:classes
:dao-layer:jar
:dao-layer:assemble
:dao-layer:compileTestJava UP-TO-DATE
:dao-layer:processTestResources UP-TO-DATE
:dao-layer:testClasses UP-TO-DATE
:dao-layer:test
:dao-layer:check
:dao-layer:build

BUILD SUCCESSFUL

Total time: 3.256 secs
To use Groovy plugin slightly more configuration is needed:
apply plugin: 'groovy'

repositories {
mavenLocal()
mavenCentral()
}

dependencies {
groovy 'org.codehaus.groovy:groovy-all:2.0.5'
}
At lines 3 to 6 Maven repositories are set. At line 9 dependency with groovy library version is specified. Of course plugin as 'java', 'groovy' and many more can be mixed each other.

If we have settings.gradle file and a build.gradle file for each module, there is no need for parent the-app/build.gradle file at all. Sure that's true but we can go another, better way.

One file to rule them all

Instead of creating many build.gradle config files, one per each module, we can use only the parent's one and make it a bit more juicy. So let us move the the-app/dao-layer/build.gradle a level up to the-app/build-gradle and fill it with new statements to achieve full project configuration:
def langLevel = 1.7

allprojects {

apply plugin: 'idea'

group = 'com.tamashumi'
version = '0.1'
}

subprojects {

apply plugin: 'groovy'

sourceCompatibility = langLevel
targetCompatibility = langLevel

repositories {
mavenLocal()
mavenCentral()
}

dependencies {
groovy 'org.codehaus.groovy:groovy-all:2.0.5'
testCompile 'org.spockframework:spock-core:0.7-groovy-2.0'
}
}

project(':dao-layer') {

dependencies {
compile 'org.hibernate:hibernate-core:4.1.7.Final'
}
}

project(':domain-model') {

dependencies {
compile project(':dao-layer')
}
}

project(':web-frontend') {

apply plugin: 'war'

dependencies {
compile project(':domain-model')
compile 'org.springframework:spring-webmvc:3.1.2.RELEASE'
}
}

idea {
project {
jdkName = langLevel
languageLevel = langLevel
}
}
At the beginning simple variable langLevel is declared. It's worth knowing that we can use almost any Groovy code inside build.gradle file, statements like for example if conditions, for/while loops, closures, switch-case, etc... Quite an advantage over inflexible XML, isn't it?

Next the allProjects block. Any configuration placed in it will influence - what a surprise - all projects, so the parent itself and sub-projects (modules). Inside of the block we have the IDE (Intellij Idea) plugin applied which I wrote more about in previous article (look under "IDE Integration" heading). Enough to say that with this plugin applied here, command gradle idea will generate Idea's project files with modules structure and dependencies. This works really well and plugins for other IDEs are available too.
Remaining two lines at this block define group and version for the project, similar as this is done by Maven.

After that subProjects block appears. It's related to all modules but not the parent project. So here the Groovy language plugin is applied, as all modules are assumed to be written in Groovy.
Below source and target language level are set.
After that come references to standard Maven repositories.
At the end of the block dependencies to groovy version and test library - Spock framework.

Following blocks, project(':module-name'), are responsible for each module configuration. They may be omitted unless allProjects or subProjects configure what's necessary for a specific module. In the example per module configuration goes as follow:
  • Dao-layer module has dependency to an ORM library - Hibernate
  • Domain-model module relies on dao-layer as a dependency. Keyword project is used here again for a reference to other module.
  • Web-frontend applies 'war' plugin which build this module into java web archive. Besides it referes to domain-model module and also use Spring MVC framework dependency.

At the end in idea block is basic info for IDE plugin. Those are parameters corresponding to the Idea's project general settings visible on the following screen shot.


jdkName should match the IDE's SDK name otherwise it has to be set manually under IDE on each Idea's project files (re)generation with gradle idea command.

Is that it?

In the matter of simplicity - yes. That's enough to automate modular application build with custom configuration per module. Not a rocket science, huh? Think about Maven's XML. It would take more effort to setup the same and still achieve less expressible configuration quite far from user-friendly.

Check the online user guide for a lot of configuration possibilities or better download Gradle and see the sample projects.
As a tasty bait take a look for this short choice of available plugins:
  • java
  • groovy
  • scala
  • cpp
  • eclipse
  • netbeans
  • ida
  • maven
  • osgi
  • war
  • ear
  • sonar
  • project-report
  • signing
and more, 3rd party plugins...

Hibernate hbm2ddl won’t create schema before creating tables

Situation I have a local H2 in memory database for integration tests and an Oracle db for production. I do not control the Oracle DB model. The in memory H2 database is created automatically by adding <prop key="hibernate.hbm2ddl.auto">update&l...Situation I have a local H2 in memory database for integration tests and an Oracle db for production. I do not control the Oracle DB model. The in memory H2 database is created automatically by adding <prop key="hibernate.hbm2ddl.auto">update&l...