HAProxy load balancing with sticky sessions based on request body

Integrating systems you have no influence on needs a lot of workarounds. Recently we could not scale Python service consuming SOAP messages with a new hardware. It just didn’t benefit from more processing cores. On the other hand (and this happens often with older software) setting up several instances gave almost linear scalability. Only thing left – configure a loadbalancer and we are done.

Easier said than done. We had to make sure messages are loadbalanced but also that all messages related to given customer USSD conversation always hit the same backend service. So, we had to use application layer information to configure sticky sessions. This is not straightforward in HAProxy when you have to look into http payload and parse some specific information. We used HAProxy 1.6 and simple LUA script to do just that:

core.Alert("LUA script parsing SOAP element loaded");

function parseElement(txn, salt)

    local payload = txn.req:dup()

    -- parses integer value from element named "element"
    local value = string.match(string.match(payload, "element>%d+<"), "%d+")
    core.Info("value: " .. value)
    return value
end

-- register HAProxy "fetch"
core.register_fetches("parseElement", parseElement)

Put this script into a file and it can be loaded in HAProxy configuration using lua-load directive.

Script registers new HAProxy fetch which can be used to configure session stickiness.

balance roundrobin
stick-table type string size 30k expire 30m
stick on "lua.parseElement" table nodes

You have to also make sure all payload is loaded before you start parsing it. This can be achieved with option http-buffer-request configuration directive.

You May Also Like

Phonegap / Cordova and cross domain ssl request problem on android.

In one app I have participated, there was a use case:
  • User fill up a form.
  • User submit the form.
  • System send data via https to server and show a response.
During development there wasn’t any problem, but when we were going to release production version then some unsuspected situation occurred. I prepare the production version accordingly with standard flow for Android environment:
  • ant release
  • align
  • signing
During conduct tests on that version, every time I try to submit the form, a connection error appear. In that situation, at the first you should check whitelist in cordova settings. Every URL you want to connect to, must be explicit type in:
res/xml/cordova.xml
If whitelist looks fine, the error is most likely caused by inner implementation of Android System. The Android WebView does not allow by default self-signed SSL certs. When app is debug-signed the SSL error is ignored, but if app is release-signed connection to untrusted services is blocked.



Workaround


You have to remember that secure connection to service with self-signed certificate is risky and unrecommended. But if you know what you are doing there is some workaround of the security problem. Behavior of method
CordovaWebViewClient.onReceivedSslError
must be changed.


Thus add new class extended CordovaWebViewClient and override ‘onReceivedSslError’. I strongly suggest to implement custom onReceiveSslError as secure as possible. I know that the problem occours when app try connect to example.domain.com and in spite of self signed certificate the domain is trusted, so only for that case the SslError is ignored.

public class MyWebViewClient extends CordovaWebViewClient {

   private static final String TAG = MyWebViewClient.class.getName();
   private static final String AVAILABLE_SLL_CN
= "example.domain.com";

   public MyWebViewClient(DroidGap ctx) {
       super(ctx);
   }

   @Override
   public void onReceivedSslError(WebView view,
SslErrorHandler handler,
android.net.http.SslError error) {

String errorSourceCName = error.getCertificate().
getIssuedTo().getCName();

       if( AVAILABLE_SLL_CN.equals(errorSourceCName) ) {
           Log.i(TAG, "Detect ssl connection error: " +
error.toString() +
„ so the error is ignored”);

           handler.proceed();
           return;
       }

       super.onReceivedSslError(view, handler, error);
   }
}
Next step is forcing yours app to  use custom implementation of WebViewClient.

public class Start extends DroidGap
{
   private static final String TAG = Start.class.getName();

   @Override
   public void onCreate(Bundle savedInstanceState)
   {
       super.onCreate(savedInstanceState);
       super.setIntegerProperty("splashscreen", R.drawable.splash);
       super.init();

       MyWebViewClient myWebViewClient = new MyWebViewClient(this);
       myWebViewClient.setWebView(this.appView);

       this.appView.setWebViewClient(myWebViewClient);
       
// yours code

   }
}
That is all ypu have to do if minSdk of yours app is greater or equals 8. In older version of Android there is no class
android.net.http.SslError
So in class MyCordovaWebViewClient class there are errors because compliator doesn’t see SslError class. Fortunately Android is(was) open source, so it is easy to find source of the class. There is no inpediments to ‘upgrade’ app and just add the file to project. I suggest to keep original packages. Thus after all operations the source tree looks like:

Class SslError placed in source tree. 
 Now the app created in release mode can connect via https to services with self-signed SSl certificates.