Formatting Java Time with Spring Boot using JSON

stf0-banner The aim of this post is to summarize and review ways of formatting Java Time objects using Spring Boot and Jackson library.

This post is organized into five steps. Each step represents one aspect of the issue and it is also related to one commit in the example project repository.

Step 0 – Prerequirements

Versions and dependencies

This tutorial is based on Spring Boot version 1.3.1.RELEASE with spring-boot-starter-web. It uses jackson-datatype-jsr310 from com.fasterxml.jackson.datatype in version 2.6.4, which is a default version of Spring Boot. All of these is based on Java 8.

The Code

In the example code repository, you can find one HTTP service made with Spring Boot. This service is a GET operation, which returns a class with Java Time objects. You can also find the integration test that deserializes the response.

Step 1 – The goal

I would like to return class Clock, containing LocalDate,LocalTime and LocalDateTime, preinitialized in constructor.

public final class Clock {
    private final LocalDate localDate;
    private final LocalTime localTime;
    private final LocalDateTime localDateTime;
    ...
}

Response class is serialized to JSON Map, which is a default behaviour. To some extent it is correct, but ISO-formatted Strings in response are preferable.

{  
    "localDate":{  
        "year":2016,
        "month":"JANUARY",
        "era":"CE",
        "dayOfYear":1,
        "dayOfWeek":"FRIDAY",
        "leapYear":true,
        "dayOfMonth":1,
        "monthValue":1,
        "chronology":{  
            "id":"ISO",
            "calendarType":"iso8601"
        }
    }
}

Integration testing is an appropriate way to test our functionality.

ResponseEntity resp = sut.getForEntity("http://localhost:8080/clock", Clock.class);

assertEquals(OK, resp.getStatusCode());
assertEquals(c.getLocalDate(), resp.getBody().getLocalDate());
assertEquals(c.getLocalTime(), resp.getBody().getLocalTime());
assertEquals(c.getLocalDateTime(), resp.getBody().getLocalDateTime());

Unfortunately, tests are not passing, because of deserialization problems. The exception with message is thrown can not instantiate from JSON object.

Step 2 – Adds serialization

First things first. We have to add JSR-310 module. It is a datatype module to make Jackson recognize Java 8 Date & Time API data types.

Note that in this example jackson-datatype-jsr310 version is inherited from spring-boot-dependencies dependency management.

com.fasterxml.jackson.datatype
      jackson-datatype-jsr310

Response is now consistent but still, not perfect. Dates are serialized as numbers:

{  
    "version":2,
    "localDate":[  
        2016,
        1,
        1
    ],
    "localTime":[  
        10,
        24
    ],
    "localDateTime":[  
        2016,
        1,
        1,
        10,
        24
    ],
    "zonedDateTime":1451640240.000000000
}

We are one step closer to our goal. Tests are passing now because this format can be deserialized without any additional deserializers. How do I know? Start an application server on commit Step 2 - Adds Object Mapper, then checkout to Step 1 - Introduce types and problems, and run integration tests without @WebIntegrationTest annotation.

Step 3 – Enables ISO formatting

ISO 8601 formatting is a standard. I’ve found it in many projects. We are going to enable and use it. Edit spring boot properties file application.properties and add the following line:

spring.jackson.serialization.WRITE_DATES_AS_TIMESTAMPS = false

Now, the response is something that I’ve expected:

{  
    "version":2,
    "localDate":"2016-01-01",
    "localTime":"10:24",
    "localDateTime":"2016-01-01T10:24",
    "zonedDateTime":"2016-01-01T10:24:00+01:00"
}

Step 4 – Adds on-demand formatting pattern

Imagine one of your client systems does not have the capability of formatting time. It may be a primitive device or microservice that treats this date as a collection of characters. That is why special formatting is required.

We can change formatting in response class by adding JsonFormat annotation with pattern parameter. Standard SimpleDateFormat rules apply.

@JsonFormat(pattern = "dd::MM::yyyy")
private final LocalDate localDate;
    
@JsonFormat(pattern = "KK:mm a")
private final LocalTime localTime;

Below there is a service response using custom @JsonFormat pattern:

{  
    "version":2,
    "localDate":"01::01::2016",
    "localTime":"10:24 AM",
    "localDateTime":"2016-01-01T10:24",
    "zonedDateTime":"2016-01-01T10:24:00+01:00"
}

Our tests are still passing. It means that this pattern is used for serialization in service and deserialization in tests.

Step 5 – Globally changes formatting

There are situations where you have to resign from ISO 8601 formatting in your whole application, and apply custom-made standards.

In this part, we will redefine the format pattern for LocalDate. This will change formatting of LocalDate in every endpoint of your API.

We have to define: – DateTimeFormatter with our pattern. – Serializer using defined pattern. – Deserializer using defined pattern. – ObjectMapper bean with custom serializer and deserializer. – RestTemplate that uses our ObjectMapper.

Bean ObjectMapper is defined with annotation @Primary, to override default configuration. My custom pattern for LocalDate is dd::MM::yyyy

public static final DateTimeFormatter FORMATTER = ofPattern("dd::MM::yyyy");
    
@Bean
@Primary
public ObjectMapper serializingObjectMapper() {
    ObjectMapper objectMapper = new ObjectMapper();
    JavaTimeModule javaTimeModule = new JavaTimeModule();
    javaTimeModule.addSerializer(LocalDate.class, new LocalDateSerializer());
    javaTimeModule.addDeserializer(LocalDate.class, new LocalDateDeserializer());
    objectMapper.registerModule(javaTimeModule);
    return objectMapper;
}

Definitions of serializer and deserializer for all LocalDate classes:

public class LocalDateSerializer extends JsonSerializer {
    
    @Override
    public void serialize(LocalDate value, JsonGenerator gen, SerializerProvider serializers) throws IOException {
        gen.writeString(value.format(FORMATTER));
    }
}
    
public class LocalDateDeserializer extends JsonDeserializer {
    
    @Override
    public LocalDate deserialize(JsonParser p, DeserializationContext ctxt) throws IOException {
        return LocalDate.parse(p.getValueAsString(), FORMATTER);
    }
}

Now, the response is formatted with our custom pattern:

{  
    "localDate":"01::01::2016"
}

Tests

When we define a custom serializer, our tests start to fail. It is because RestTemplate knows nothing about our deserializer. We have to create a custom RestTemplateFactory that creates RestTemplate with object mapper containing our deserializer.

@Configuration
public class RestTemplateFactory {
    
    @Autowired
    private ObjectMapper objectMapper;
    
    @Bean
    public RestTemplate createRestTemplate() {
        RestTemplate restTemplate = new RestTemplate();
        List converters = new ArrayList();
        MappingJackson2HttpMessageConverter jsonConverter = new MappingJackson2HttpMessageConverter();
        jsonConverter.setObjectMapper(objectMapper);
        converters.add(jsonConverter);
        restTemplate.setMessageConverters(converters);
        return restTemplate;
    }
}

Conclusion

Custom formatting Dates is relatively simple, but you have to know how to set up it. Luckily, Jackson works smoothly with Spring. If you know other ways of solving this problem or you have other observations, please comment or let me know.

Blog from Michał Lewandowski personal blog. Photo Credit.

You May Also Like

How to automate tests with Groovy 2.0, Spock and Gradle

This is the launch of the 1st blog in my life, so cheers and have a nice reading!

y u no test?

Couple of years ago I wasn't a big fan of unit testing. It was obvious to me that well prepared unit tests are crucial though. I didn't known why exactly crucial yet then. I just felt they are important. My disliking to write automation tests was mostly related to the effort necessary to prepare them. Also a spaghetti code was easily spotted in test sources.

Some goodies at hand

Now I know! Test are crucial to get a better design and a confidence. Confidence to improve without a hesitation. Moreover, now I have the tool to make test automation easy as Sunday morning... I'm talking about the Spock Framework. If you got here probably already know what the Spock is, so I won't introduce it. Enough to say that Spock is an awesome unit testing tool which, thanks to Groovy AST Transformation, simplifies creation of tests greatly.

An obstacle

The point is, since a new major version of Groovy has been released (2.0), there is no matching version of Spock available yet.

What now?

Well, in a matter of fact there is such a version. It's still under development though. It can be obtained from this Maven repository. We can of course use the Maven to build a project and run tests. But why not to go even more "groovy" way? XML is not for humans, is it? Lets use Gradle.

The build file

Update: at the end of the post is updated version of the build file.
apply plugin: 'groovy'
apply plugin: 'idea'

def langLevel = 1.7

sourceCompatibility = langLevel
targetCompatibility = langLevel

group = 'com.tamashumi.example.testwithspock'
version = '0.1'

repositories {
mavenLocal()
mavenCentral()
maven { url 'http://oss.sonatype.org/content/repositories/snapshots/' }
}

dependencies {
groovy 'org.codehaus.groovy:groovy-all:2.0.1'
testCompile 'org.spockframework:spock-core:0.7-groovy-2.0-SNAPSHOT'
}

idea {
project {
jdkName = langLevel
languageLevel = langLevel
}
}
As you can see the build.gradle file is almost self-explanatory. Groovy plugin is applied to compile groovy code. It needs groovy-all.jar - declared in version 2.0 at dependencies block just next to Spock in version 0.7. What's most important, mentioned Maven repository URL is added at repositories block.

Project structure and execution

Gradle's default project directory structure is similar to Maven's one. Unfortunately there is no 'create project' task and you have to create it by hand. It's not a big obstacle though. The structure you will create will more or less look as follows:
<project root>

├── build.gradle
└── src
├── main
│ ├── groovy
└── test
└── groovy
To build a project now you can type command gradle build or gradle test to only run tests.

How about Java?

You can test native Java code with Spock. Just add src/main/java directory and a following line to the build.gradle:
apply plugin: 'java'
This way if you don't want or just can't deploy Groovy compiled stuff into your production JVM for any reason, still whole goodness of testing with Spock and Groovy is at your hand.

A silly-simple example

Just to show that it works, here you go with a basic example.

Java simple example class:

public class SimpleJavaClass {

public int sumAll(int... args) {

int sum = 0;

for (int arg : args){
sum += arg;
}

return sum;
}
}

Groovy simple example class:

class SimpleGroovyClass {

String concatenateAll(char separator, String... args) {

args.join(separator as String)
}
}

The test, uhm... I mean the Specification:

class JustASpecification extends Specification {

@Unroll('Sums integers #integers into: #expectedResult')
def "Can sum different amount of integers"() {

given:
def instance = new SimpleJavaClass()

when:
def result = instance.sumAll(* integers)

then:
result == expectedResult

where:
expectedResult | integers
11 | [3, 3, 5]
8 | [3, 5]
254 | [2, 4, 8, 16, 32, 64, 128]
22 | [7, 5, 6, 2, 2]
}

@Unroll('Concatenates strings #strings with separator "#separator" into: #expectedResult')
def "Can concatenate different amount of integers with a specified separator"() {

given:
def instance = new SimpleGroovyClass()

when:
def result = instance.concatenateAll(separator, * strings)

then:
result == expectedResult

where:
expectedResult | separator | strings
'Whasup dude?' | ' ' as char | ['Whasup', 'dude?']
'2012/09/15' | '/' as char | ['2012', '09', '15']
'nice-to-meet-you' | '-' as char | ['nice', 'to', 'meet', 'you']
}
}
To run tests with Gradle simply execute command gradle test. Test reports can be found at <project root>/build/reports/tests/index.html and look kind a like this.


Please note that, thanks to @Unroll annotation, test is executed once per each parameters row in the 'table' at specification's where: block. This isn't a Java label, but a AST transformation magic.

IDE integration

Gradle's plugin for Iintellij Idea

I've added also Intellij Idea plugin for IDE project generation and some configuration for it (IDE's JDK name). To generate Idea's project files just run command: gradle idea There are available Eclipse and Netbeans plugins too, however I haven't tested them. Idea's one works well.

Intellij Idea's plugins for Gradle

Idea itself has a light Gradle support built-in on its own. To not get confused: Gradle has plugin for Idea and Idea has plugin for Gradle. To get even more 'pluginated', there is also JetGradle plugin within Idea. However I haven't found good reason for it's existence - well, maybe excluding one. It shows dependency tree. There is a bug though - JetGradle work's fine only for lang level 1.6. Strangely all the plugins together do not conflict each other. They even give complementary, quite useful tool set.

Running tests under IDE

Jest to add something sweet this is how Specification looks when run with jUnit  runner under Intellij Idea (right mouse button on JustASpecification class or whole folder of specification extending classes and select "Run ...". You'll see a nice view like this.

Building web application

If you need to build Java web application and bundle it as war archive just add plugin by typing the line
apply plugin: 'war'
in the build.gradle file and create a directory src/main/webapp.

Want to know more?

If you haven't heard about Spock or Gradle before or just curious, check the following links:

What next?

The last thing left is to write the real production code you are about to test. No matter will it be Groovy or Java, I leave this to your need and invention. Of course, you are welcome to post a comments here. I'll answer or even write some more posts about the subject.

Important update

Spock version 0.7 has been released, so the above build file doesn't work anymore. It's easy to fix it though. Just remove last dash and a word SNAPSHOT from Spock dependency declaration. Other important thing is that now spock-core depends on groovy-all-2.0.5, so to avoid dependency conflict groovy dependency should be changed from version 2.0.1 to 2.0.5.
Besides oss.sonata.org snapshots maven repository can be removed. No obstacles any more and the build file now looks as follows:
apply plugin: 'groovy'
apply plugin: 'idea'

def langLevel = 1.7

sourceCompatibility = langLevel
targetCompatibility = langLevel

group = 'com.tamashumi.example.testwithspock'
version = '0.1'

repositories {
mavenLocal()
mavenCentral()
}

dependencies {
groovy 'org.codehaus.groovy:groovy-all:2.0.5'
testCompile 'org.spockframework:spock-core:0.7-groovy-2.0'
}

idea {
project {
jdkName = langLevel
languageLevel = langLevel
}
}