Integration testing custom validation constraints in Jersey 2

I recently joined a team trying to switch a monolithic legacy system into set of RESTful services in Java. They decided to use latest 2.x version of Jersey as a REST container which was not a first choice for me, since I’m not a big fan of JSR-* specs. But now I must admit that JAX-RS 2.x is doing things right: requires almost zero boilerplate code, support auto-discovery of features and prefers convention over configuration like other modern frameworks. Since the spec is still young, it’s hard to find good tutorials and kick-off projects with some working code. I created jersey2-starter project on GitHub which can be used as starting point for your own production-ready RESTful service. In this post I’d like to cover how to implement and integration test your own validation constraints of REST resources. Custom constraints One of the issues which bothers me when coding REST in Java is littering your class model with annotations. Suppose you want to build a simple Todo list REST service, when using Jackson, validation and Spring Data, you can easily end up with this as your entity class: @Document public class Todo { private Long id; @NotNull private String description; @NotNull private Boolean completed; @NotNull private DateTime dueDate; @JsonCreator public Todo(@JsonProperty("description") String description, @JsonProperty("dueDate") DateTime dueDate) { this.description = description; this.dueDate = dueDate; this.completed = false; } // getters and setters } Your domain model is now effectively blured by messy annotations almost everywhere. Let’s see what we can do with validation constraints (@NotNulls). Some may say that you could introduce some DTO layer with own validation rules, but it conflicts for me with pure REST API design, which stands that you operate on resources which should map to your domain classes. On the other hand – what does it mean that Todo object is valid? When you create a Todo you should provide a description and due date, but what when you’re updating? You should be able to change any of description, due date (postponing) and completion flag (marking as done) – but you should provide at least one of these as valid modification. So my idea is to introduce custom validation constraints, different ones for creation and modification: @Target({TYPE, PARAMETER}) @Retention(RUNTIME) @Constraint(validatedBy = ValidForCreation.Validator.class) public @interface ValidForCreation { //... class Validator implements ConstraintValidator<ValidForCreation, Todo> { /... @Override public boolean isValid(Todo todo, ConstraintValidatorContext constraintValidatorContext) { return todo != null && todo.getId() == null && todo.getDescription() != null && todo.getDueDate() != null; } } } @Target({TYPE, PARAMETER}) @Retention(RUNTIME) @Constraint(validatedBy = ValidForModification.Validator.class) public @interface ValidForModification { //... class Validator implements ConstraintValidator<ValidForModification, Todo> { /... @Override public boolean isValid(Todo todo, ConstraintValidatorContext constraintValidatorContext) { return todo != null && todo.getId() == null && (todo.getDescription() != null || todo.getDueDate() != null || todo.isCompleted() != null); } } } And now you can move validation annotations to the definition of a REST endpoint: @POST @Consumes(APPLICATION_JSON) public Response create(@ValidForCreation Todo todo) {...} @PUT @Consumes(APPLICATION_JSON) public Response update(@ValidForModification Todo todo) {...} And now you can remove those NotNulls from your model. Integration testing There are in general two approaches to integration testing: test is being run on separate JVM than the app, which is deployed on some other integration environment test deploys the application programmatically in the setup block. Both of these have their pros and cons, but for small enough servoces, I personally prefer the second approach. It’s much easier to setup and you have only one JVM started, which makes debugging really easy. You can use a generic framework like Arquillian for starting your application in a container environment, but I prefer simple solutions and just use emdedded Jetty. To make test setup 100% production equivalent, I’m creating full Jetty’s WebAppContext and have to resolve all runtime dependencies for Jersey auto-discovery to work. This can be simply achieved with Maven resolved from Shrinkwrap – an Arquillian subproject: WebAppContext webAppContext = new WebAppContext(); webAppContext.setResourceBase("src/main/webapp"); webAppContext.setContextPath("/"); File[] mavenLibs = Maven.resolver().loadPomFromFile("pom.xml") .importCompileAndRuntimeDependencies() .resolve().withTransitivity().asFile(); for (File file: mavenLibs) { webAppContext.getMetaData().addWebInfJar(new FileResource(file.toURI())); } webAppContext.getMetaData().addContainerResource(new FileResource(new File("./target/classes").toURI())); webAppContext.setConfigurations(new Configuration[] { new AnnotationConfiguration(), new WebXmlConfiguration(), new WebInfConfiguration() }); server.setHandler(webAppContext); (this Stackoverflow thread inspired me a lot here) Now it’s time for the last part of the post: parametrizing our integration tests. Since we want to test validation constraints, there are many edge paths to check (and make your code coverage close to 100%). Writing one test per each case could be a bad idea. Among the many solutions for JUnit I’m most convinced to the Junit Params by Pragmatists team. It’s really simple and have nice concept of JQuery-like helper for creating providers. Here is my tests code (I’m also using builder pattern here to create various kinds of Todos): @Test @Parameters(method = "provideInvalidTodosForCreation") public void shouldRejectInvalidTodoWhenCreate(Todo todo) { Response response = createTarget().request().post(Entity.json(todo)); assertThat(response.getStatus()).isEqualTo(BAD_REQUEST.getStatusCode()); } private static Object[] provideInvalidTodosForCreation() { return $( new TodoBuilder().withDescription("test").build(), new TodoBuilder().withDueDate(DateTime.now()).build(), new TodoBuilder().withId(123L).build(), new TodoBuilder().build() ); } OK, enough of reading, feel free to clone the project and start writing your REST services! I recently joined a team trying to switch a monolithic legacy system into set of RESTful services in Java. They decided to use latest 2.x version of Jersey as a REST container which was not a first choice for me, since I’m not a big fan of JSR-* specs. But now I must admit that JAX-RS 2.x is doing things right: requires almost zero boilerplate code, support auto-discovery of features and prefers convention over configuration like other modern frameworks. Since the spec is still young, it’s hard to find good tutorials and kick-off projects with some working code. I created jersey2-starter project on GitHub which can be used as starting point for your own production-ready RESTful service. In this post I’d like to cover how to implement and integration test your own validation constraints of REST resources. Custom constraints One of the issues which bothers me when coding REST in Java is littering your class model with annotations. Suppose you want to build a simple Todo list REST service, when using Jackson, validation and Spring Data, you can easily end up with this as your entity class: @Document public class Todo { private Long id; @NotNull private String description; @NotNull private Boolean completed; @NotNull private DateTime dueDate; @JsonCreator public Todo(@JsonProperty("description") String description, @JsonProperty("dueDate") DateTime dueDate) { this.description = description; this.dueDate = dueDate; this.completed = false; } // getters and setters } Your domain model is now effectively blured by messy annotations almost everywhere. Let’s see what we can do with validation constraints (@NotNulls). Some may say that you could introduce some DTO layer with own validation rules, but it conflicts for me with pure REST API design, which stands that you operate on resources which should map to your domain classes. On the other hand – what does it mean that Todo object is valid? When you create a Todo you should provide a description and due date, but what when you’re updating? You should be able to change any of description, due date (postponing) and completion flag (marking as done) – but you should provide at least one of these as valid modification. So my idea is to introduce custom validation constraints, different ones for creation and modification: @Target({TYPE, PARAMETER}) @Retention(RUNTIME) @Constraint(validatedBy = ValidForCreation.Validator.class) public @interface ValidForCreation { //... class Validator implements ConstraintValidator<ValidForCreation, Todo> { /... @Override public boolean isValid(Todo todo, ConstraintValidatorContext constraintValidatorContext) { return todo != null && todo.getId() == null && todo.getDescription() != null && todo.getDueDate() != null; } } } @Target({TYPE, PARAMETER}) @Retention(RUNTIME) @Constraint(validatedBy = ValidForModification.Validator.class) public @interface ValidForModification { //... class Validator implements ConstraintValidator<ValidForModification, Todo> { /... @Override public boolean isValid(Todo todo, ConstraintValidatorContext constraintValidatorContext) { return todo != null && todo.getId() == null && (todo.getDescription() != null || todo.getDueDate() != null || todo.isCompleted() != null); } } } And now you can move validation annotations to the definition of a REST endpoint: @POST @Consumes(APPLICATION_JSON) public Response create(@ValidForCreation Todo todo) {...} @PUT @Consumes(APPLICATION_JSON) public Response update(@ValidForModification Todo todo) {...} And now you can remove those NotNulls from your model. Integration testing There are in general two approaches to integration testing: test is being run on separate JVM than the app, which is deployed on some other integration environment test deploys the application programmatically in the setup block. Both of these have their pros and cons, but for small enough servoces, I personally prefer the second approach. It’s much easier to setup and you have only one JVM started, which makes debugging really easy. You can use a generic framework like Arquillian for starting your application in a container environment, but I prefer simple solutions and just use emdedded Jetty. To make test setup 100% production equivalent, I’m creating full Jetty’s WebAppContext and have to resolve all runtime dependencies for Jersey auto-discovery to work. This can be simply achieved with Maven resolved from Shrinkwrap – an Arquillian subproject: WebAppContext webAppContext = new WebAppContext(); webAppContext.setResourceBase("src/main/webapp"); webAppContext.setContextPath("/"); File[] mavenLibs = Maven.resolver().loadPomFromFile("pom.xml") .importCompileAndRuntimeDependencies() .resolve().withTransitivity().asFile(); for (File file: mavenLibs) { webAppContext.getMetaData().addWebInfJar(new FileResource(file.toURI())); } webAppContext.getMetaData().addContainerResource(new FileResource(new File("./target/classes").toURI())); webAppContext.setConfigurations(new Configuration[] { new AnnotationConfiguration(), new WebXmlConfiguration(), new WebInfConfiguration() }); server.setHandler(webAppContext); (this Stackoverflow thread inspired me a lot here) Now it’s time for the last part of the post: parametrizing our integration tests. Since we want to test validation constraints, there are many edge paths to check (and make your code coverage close to 100%). Writing one test per each case could be a bad idea. Among the many solutions for JUnit I’m most convinced to the Junit Params by Pragmatists team. It’s really simple and have nice concept of JQuery-like helper for creating providers. Here is my tests code (I’m also using builder pattern here to create various kinds of Todos): @Test @Parameters(method = "provideInvalidTodosForCreation") public void shouldRejectInvalidTodoWhenCreate(Todo todo) { Response response = createTarget().request().post(Entity.json(todo)); assertThat(response.getStatus()).isEqualTo(BAD_REQUEST.getStatusCode()); } private static Object[] provideInvalidTodosForCreation() { return $( new TodoBuilder().withDescription("test").build(), new TodoBuilder().withDueDate(DateTime.now()).build(), new TodoBuilder().withId(123L).build(), new TodoBuilder().build() ); } OK, enough of reading, feel free to clone the project and start writing your REST services!

I recently joined a team trying to switch a monolithic legacy system into set of RESTful services in Java. They decided to use latest 2.x version of Jersey as a REST container which was not a first choice for me, since I’m not a big fan of JSR-* specs. But now I must admit that JAX-RS 2.x is doing things right: requires almost zero boilerplate code, support auto-discovery of features and prefers convention over configuration like other modern frameworks. Since the spec is still young, it’s hard to find good tutorials and kick-off projects with some working code. I created jersey2-starter project on GitHub which can be used as starting point for your own production-ready RESTful service. In this post I’d like to cover how to implement and integration test your own validation constraints of REST resources.

Custom constraints

One of the issues which bothers me when coding REST in Java is littering your class model with annotations. Suppose you want to build a simple Todo list REST service, when using Jackson, validation and Spring Data, you can easily end up with this as your entity class:

@Document
public class Todo {
    private Long id;
    @NotNull
    private String description;
    @NotNull
    private Boolean completed;
    @NotNull
    private DateTime dueDate;

    @JsonCreator
    public Todo(@JsonProperty("description") String description, @JsonProperty("dueDate") DateTime dueDate) {
        this.description = description;
        this.dueDate = dueDate;
        this.completed = false;
    }
    // getters and setters
}

Your domain model is now effectively blured by messy annotations almost everywhere. Let’s see what we can do with validation constraints (@NotNulls). Some may say that you could introduce some DTO layer with own validation rules, but it conflicts for me with pure REST API design, which stands that you operate on resources which should map to your domain classes. On the other hand – what does it mean that Todo object is valid? When you create a Todo you should provide a description and due date, but what when you’re updating? You should be able to change any of description, due date (postponing) and completion flag (marking as done) – but you should provide at least one of these as valid modification. So my idea is to introduce custom validation constraints, different ones for creation and modification:

@Target({TYPE, PARAMETER})
@Retention(RUNTIME)
@Constraint(validatedBy = ValidForCreation.Validator.class)
public @interface ValidForCreation {
    //...
    class Validator implements ConstraintValidator<ValidForCreation, Todo> {
    /...
        @Override
        public boolean isValid(Todo todo, ConstraintValidatorContext constraintValidatorContext) {
            return todo != null
                && todo.getId() == null
                && todo.getDescription() != null
                && todo.getDueDate() != null;
        }
    }
}

@Target({TYPE, PARAMETER})
@Retention(RUNTIME)
@Constraint(validatedBy = ValidForModification.Validator.class)
public @interface ValidForModification {
    //...
    class Validator implements ConstraintValidator<ValidForModification, Todo> {
    /...
        @Override
        public boolean isValid(Todo todo, ConstraintValidatorContext constraintValidatorContext) {
            return todo != null
                && todo.getId() == null
                && (todo.getDescription() != null || todo.getDueDate() != null || todo.isCompleted() != null);
        }
    }
}

And now you can move validation annotations to the definition of a REST endpoint:

@POST
@Consumes(APPLICATION_JSON)
public Response create(@ValidForCreation Todo todo) {...}

@PUT
@Consumes(APPLICATION_JSON)
public Response update(@ValidForModification Todo todo) {...}

And now you can remove those NotNulls from your model.

Integration testing

There are in general two approaches to integration testing:

  • test is being run on separate JVM than the app, which is deployed on some other integration environment
  • test deploys the application programmatically in the setup block.

Both of these have their pros and cons, but for small enough servoces, I personally prefer the second approach. It’s much easier to setup and you have only one JVM started, which makes debugging really easy. You can use a generic framework like Arquillian for starting your application in a container environment, but I prefer simple solutions and just use emdedded Jetty. To make test setup 100% production equivalent, I’m creating full Jetty’s WebAppContext and have to resolve all runtime dependencies for Jersey auto-discovery to work. This can be simply achieved with Maven resolved from Shrinkwrap – an Arquillian subproject:

    WebAppContext webAppContext = new WebAppContext();
    webAppContext.setResourceBase("src/main/webapp");
    webAppContext.setContextPath("/");
    File[] mavenLibs = Maven.resolver().loadPomFromFile("pom.xml")
                .importCompileAndRuntimeDependencies()
                .resolve().withTransitivity().asFile();
    for (File file: mavenLibs) {
        webAppContext.getMetaData().addWebInfJar(new FileResource(file.toURI()));
    }
    webAppContext.getMetaData().addContainerResource(new FileResource(new File("./target/classes").toURI()));

    webAppContext.setConfigurations(new Configuration[] {
        new AnnotationConfiguration(),
        new WebXmlConfiguration(),
        new WebInfConfiguration()
    });
    server.setHandler(webAppContext);

(this Stackoverflow thread inspired me a lot here)

Now it’s time for the last part of the post: parametrizing our integration tests. Since we want to test validation constraints, there are many edge paths to check (and make your code coverage close to 100%). Writing one test per each case could be a bad idea. Among the many solutions for JUnit I’m most convinced to the Junit Params by Pragmatists team. It’s really simple and have nice concept of JQuery-like helper for creating providers. Here is my tests code (I’m also using builder pattern here to create various kinds of Todos):

@Test
@Parameters(method = "provideInvalidTodosForCreation")
public void shouldRejectInvalidTodoWhenCreate(Todo todo) {
    Response response = createTarget().request().post(Entity.json(todo));

    assertThat(response.getStatus()).isEqualTo(BAD_REQUEST.getStatusCode());
}

private static Object[] provideInvalidTodosForCreation() {
    return $(
        new TodoBuilder().withDescription("test").build(),
        new TodoBuilder().withDueDate(DateTime.now()).build(),
        new TodoBuilder().withId(123L).build(),
        new TodoBuilder().build()
    );
}

OK, enough of reading, feel free to clone the project and start writing your REST services!

You May Also Like

Thought static method can’t be easy to mock, stub nor track? Wrong!

No matter why, no matter is it a good idea. Sometimes one just wants to check or it's necessary to be done. Mock a static method, woot? Impossibru!

In pure Java world it is still a struggle. But Groovy allows you to do that really simple. Well, not groovy alone, but with a great support of Spock.

Lets move on straight to the example. To catch some context we have an abstract for the example needs. A marketing project with a set of offers. One to many.

import spock.lang.Specification

class OfferFacadeSpec extends Specification {

    OfferFacade facade = new OfferFacade()

    def setup() {
        GroovyMock(Project, global: true)
    }

    def 'delegates an add offer call to the domain with proper params'() {
        given:
            Map params = [projId: projectId, name: offerName]

        when:
            Offer returnedOffer = facade.add(params)

        then:
            1 * Project.addOffer(projectId, _) >> { projId, offer -> offer }
            returnedOffer.name == params.name

        where:
            projectId | offerName
            1         | 'an Offer'
            15        | 'whasup!?'
            123       | 'doskonała oferta - kup teraz!'
    }
}
So we test a facade responsible for handling "add offer to the project" call triggered  somewhere in a GUI.
We want to ensure that static method Project.addOffer(long, Offer) will receive correct params when java.util.Map with user form input comes to the facade.add(params).
This is unit test, so how Project.addOffer() works is out of scope. Thus we want to stub it.

The most important is a GroovyMock(Project, global: true) statement.
What it does is modifing Project class to behave like a Spock's mock. 
GroovyMock() itself is a method inherited from SpecificationThe global flag is necessary to enable mocking static methods.
However when one comes to the need of mocking static method, author of Spock Framework advice to consider redesigning of implementation. It's not a bad advice, I must say.

Another important thing are assertions at then: block. First one checks an interaction, if the Project.addOffer() method was called exactly once, with a 1st argument equal to the projectId and some other param (we don't have an object instance yet to assert anything about it).
Right shit operator leads us to the stub which replaces original method implementation by such statement.
As a good stub it does nothing. The original method definition has return type Offer. The stub needs to do the same. So an offer passed as the 2nd argument is just returned.
Thanks to this we can assert about name property if it's equal with the value from params. If no return was designed the name could be checked inside the stub Closure, prefixed with an assert keyword.

Worth of  mentioning is that if you want to track interactions of original static method implementation without replacing it, then you should try using GroovySpy instead of GroovyMock.

Unfortunately static methods declared at Java object can't be treated in such ways. Though regular mocks and whole goodness of Spock can be used to test pure Java code, which is awesome anyway :)No matter why, no matter is it a good idea. Sometimes one just wants to check or it's necessary to be done. Mock a static method, woot? Impossibru!

In pure Java world it is still a struggle. But Groovy allows you to do that really simple. Well, not groovy alone, but with a great support of Spock.

Lets move on straight to the example. To catch some context we have an abstract for the example needs. A marketing project with a set of offers. One to many.

import spock.lang.Specification

class OfferFacadeSpec extends Specification {

    OfferFacade facade = new OfferFacade()

    def setup() {
        GroovyMock(Project, global: true)
    }

    def 'delegates an add offer call to the domain with proper params'() {
        given:
            Map params = [projId: projectId, name: offerName]

        when:
            Offer returnedOffer = facade.add(params)

        then:
            1 * Project.addOffer(projectId, _) >> { projId, offer -> offer }
            returnedOffer.name == params.name

        where:
            projectId | offerName
            1         | 'an Offer'
            15        | 'whasup!?'
            123       | 'doskonała oferta - kup teraz!'
    }
}
So we test a facade responsible for handling "add offer to the project" call triggered  somewhere in a GUI.
We want to ensure that static method Project.addOffer(long, Offer) will receive correct params when java.util.Map with user form input comes to the facade.add(params).
This is unit test, so how Project.addOffer() works is out of scope. Thus we want to stub it.

The most important is a GroovyMock(Project, global: true) statement.
What it does is modifing Project class to behave like a Spock's mock. 
GroovyMock() itself is a method inherited from SpecificationThe global flag is necessary to enable mocking static methods.
However when one comes to the need of mocking static method, author of Spock Framework advice to consider redesigning of implementation. It's not a bad advice, I must say.

Another important thing are assertions at then: block. First one checks an interaction, if the Project.addOffer() method was called exactly once, with a 1st argument equal to the projectId and some other param (we don't have an object instance yet to assert anything about it).
Right shit operator leads us to the stub which replaces original method implementation by such statement.
As a good stub it does nothing. The original method definition has return type Offer. The stub needs to do the same. So an offer passed as the 2nd argument is just returned.
Thanks to this we can assert about name property if it's equal with the value from params. If no return was designed the name could be checked inside the stub Closure, prefixed with an assert keyword.

Worth of  mentioning is that if you want to track interactions of original static method implementation without replacing it, then you should try using GroovySpy instead of GroovyMock.

Unfortunately static methods declared at Java object can't be treated in such ways. Though regular mocks and whole goodness of Spock can be used to test pure Java code, which is awesome anyway :)