Weird Oracle

“It’s not a bug, it’s a feature” PL/SQL like any other procedural extension to SQL has the ability to execute dynamic statements: EXECUTE IMMEDIATE. But not everyone knows it works differently for SQL statements and PL/SQL blocks. The difference lies in parameters passing.

Consider a simple example when we need to add a new row to a table using dynamic statement:

BEGIN
  p_date := to_char(SYSDATE);
  EXECUTE IMMEDIATE 'INSERT INTO test (created, modified, id, value)
      VALUES ('||p_date||', '||p_date||', '||p_id||', '||p_value||')';
END;

It works, but has a serious flaw: a new statement is compiled for every set of parameters and for every call. We should use placeholders in the statement and pass values through USING clause. To my great surprise, even experienced Oracle programmers may have problems to do it right:

BEGIN
  p_date := to_char(SYSDATE);
  EXECUTE IMMEDIATE 'INSERT INTO test (created, modified, id, value)
      VALUES (:p_date, :p_date, :p_id, :p_value)';
  USING (p_date, p_id, p_value);
END;

Looks good? But id does not work. According to specification when calling SQL statements, Oracle does not even look at placeholders names but on number and order of placeholders – every placeholder needs precisely one argument on the USING list. The correct way to do it is:

BEGIN
  p_date := to_char(SYSDATE);
  EXECUTE IMMEDIATE 'INSERT INTO test (created, modified, id, value)
      VALUES (:x, :x, :x, :x)';
  USING (p_date, p_date, p_id, p_value);
END;

Notice repeated p_date in using clause. Repeating of the placeholder name is also intentional – i think it might help notice that one need to be cautious when modifying this piece of code. Now to make things even more confusing, assume that we add a procedure to insert that row but still need to call it dynamically. This time Oracle will behave differently: it will now look at placeholder names and will expect only one value per placeholder name:

BEGIN
  p_date := to_char(SYSDATE);
  EXECUTE IMMEDIATE 'BEGIN insert_into_test (:p_date, :p_date, :p_id, :p_value); END;';
  USING (p_date, p_id, p_value);
END;

Now the total weirdness: USING clause has no way of specifying placeholder name for each argument – here still only the order counts. Reading such a piece of code and trying to decipher which parameter gets which value may be painful:

BEGIN
  p_date := to_char(SYSDATE);
  EXECUTE IMMEDIATE 'BEGIN some_proc (:p_date, :p_user, :p_date, :p_id, :p_value, :p_user); END;';
  USING (...???...);
END;

Now imagine that the dynamic block consists of several calls with some common arguments and that the block itself is created programmatically… I bet one will quickly use unique placeholder names (like :p1, :p2, :p3,…) and pass each value multiple times or give up parameter passing entirely and use string concatenation method instead. And if you are still reading this – a short riddle:

EXECUTE IMMEDIATE 'call some_proc(:a, :a, :b, :c);' USING (...);

How many values should be passed here?

You May Also Like

Thought static method can’t be easy to mock, stub nor track? Wrong!

No matter why, no matter is it a good idea. Sometimes one just wants to check or it's necessary to be done. Mock a static method, woot? Impossibru!

In pure Java world it is still a struggle. But Groovy allows you to do that really simple. Well, not groovy alone, but with a great support of Spock.

Lets move on straight to the example. To catch some context we have an abstract for the example needs. A marketing project with a set of offers. One to many.

import spock.lang.Specification

class OfferFacadeSpec extends Specification {

    OfferFacade facade = new OfferFacade()

    def setup() {
        GroovyMock(Project, global: true)
    }

    def 'delegates an add offer call to the domain with proper params'() {
        given:
            Map params = [projId: projectId, name: offerName]

        when:
            Offer returnedOffer = facade.add(params)

        then:
            1 * Project.addOffer(projectId, _) >> { projId, offer -> offer }
            returnedOffer.name == params.name

        where:
            projectId | offerName
            1         | 'an Offer'
            15        | 'whasup!?'
            123       | 'doskonała oferta - kup teraz!'
    }
}
So we test a facade responsible for handling "add offer to the project" call triggered  somewhere in a GUI.
We want to ensure that static method Project.addOffer(long, Offer) will receive correct params when java.util.Map with user form input comes to the facade.add(params).
This is unit test, so how Project.addOffer() works is out of scope. Thus we want to stub it.

The most important is a GroovyMock(Project, global: true) statement.
What it does is modifing Project class to behave like a Spock's mock. 
GroovyMock() itself is a method inherited from SpecificationThe global flag is necessary to enable mocking static methods.
However when one comes to the need of mocking static method, author of Spock Framework advice to consider redesigning of implementation. It's not a bad advice, I must say.

Another important thing are assertions at then: block. First one checks an interaction, if the Project.addOffer() method was called exactly once, with a 1st argument equal to the projectId and some other param (we don't have an object instance yet to assert anything about it).
Right shit operator leads us to the stub which replaces original method implementation by such statement.
As a good stub it does nothing. The original method definition has return type Offer. The stub needs to do the same. So an offer passed as the 2nd argument is just returned.
Thanks to this we can assert about name property if it's equal with the value from params. If no return was designed the name could be checked inside the stub Closure, prefixed with an assert keyword.

Worth of  mentioning is that if you want to track interactions of original static method implementation without replacing it, then you should try using GroovySpy instead of GroovyMock.

Unfortunately static methods declared at Java object can't be treated in such ways. Though regular mocks and whole goodness of Spock can be used to test pure Java code, which is awesome anyway :)No matter why, no matter is it a good idea. Sometimes one just wants to check or it's necessary to be done. Mock a static method, woot? Impossibru!

In pure Java world it is still a struggle. But Groovy allows you to do that really simple. Well, not groovy alone, but with a great support of Spock.

Lets move on straight to the example. To catch some context we have an abstract for the example needs. A marketing project with a set of offers. One to many.

import spock.lang.Specification

class OfferFacadeSpec extends Specification {

    OfferFacade facade = new OfferFacade()

    def setup() {
        GroovyMock(Project, global: true)
    }

    def 'delegates an add offer call to the domain with proper params'() {
        given:
            Map params = [projId: projectId, name: offerName]

        when:
            Offer returnedOffer = facade.add(params)

        then:
            1 * Project.addOffer(projectId, _) >> { projId, offer -> offer }
            returnedOffer.name == params.name

        where:
            projectId | offerName
            1         | 'an Offer'
            15        | 'whasup!?'
            123       | 'doskonała oferta - kup teraz!'
    }
}
So we test a facade responsible for handling "add offer to the project" call triggered  somewhere in a GUI.
We want to ensure that static method Project.addOffer(long, Offer) will receive correct params when java.util.Map with user form input comes to the facade.add(params).
This is unit test, so how Project.addOffer() works is out of scope. Thus we want to stub it.

The most important is a GroovyMock(Project, global: true) statement.
What it does is modifing Project class to behave like a Spock's mock. 
GroovyMock() itself is a method inherited from SpecificationThe global flag is necessary to enable mocking static methods.
However when one comes to the need of mocking static method, author of Spock Framework advice to consider redesigning of implementation. It's not a bad advice, I must say.

Another important thing are assertions at then: block. First one checks an interaction, if the Project.addOffer() method was called exactly once, with a 1st argument equal to the projectId and some other param (we don't have an object instance yet to assert anything about it).
Right shit operator leads us to the stub which replaces original method implementation by such statement.
As a good stub it does nothing. The original method definition has return type Offer. The stub needs to do the same. So an offer passed as the 2nd argument is just returned.
Thanks to this we can assert about name property if it's equal with the value from params. If no return was designed the name could be checked inside the stub Closure, prefixed with an assert keyword.

Worth of  mentioning is that if you want to track interactions of original static method implementation without replacing it, then you should try using GroovySpy instead of GroovyMock.

Unfortunately static methods declared at Java object can't be treated in such ways. Though regular mocks and whole goodness of Spock can be used to test pure Java code, which is awesome anyway :)