Modular Web Application using Eclipse Snaps

Few days ago, new milestone 3.0.0.M03 of Eclipse Virgo was released. Final release of this well prepared OSGi-based application Server getting closer so I decided to take a look at how to use it to write simple modular web application.

What does it mean a modular web application in OSGi environment? I imagine that this application should:

1) Change their look after installation of some extensions.

2) Also we should be able to write new request handlers for our application or modify flow control of existed.

First idea which occurred to me how to resolve first mentioned problem is to use fragment bundles mechanism. Fragment bundles give opportunity to create bundles with resources and classes which will be accessible from host bundle classloader. A key use case of its was “providing translation files for different locales“. So we can do few fragments with jsp files which should be able to include in index servlet page. Also we can provide some configuration files with class names of new request handlers which could be created using java reflection.

But fragment bundles have some disadvantages. How we can read in specification: “The new content of the updated fragment must not be allowed to attach to the host bundles until the Framework is restarted or the host bundle is refreshed“. This mean that we cannot do installation of extention without refreshing host bundle. Also new jsps must be compiled as a part of host application’s jsps so it is second reason why host bundle should be restarted. The last thing is that fragment bundles can’t have Bundle Activator which is also useful in many cases.

Eclipse Virgo gives component which resolves this problems – Virgo Snaps. It is easy in use extension which helps create modular web application framework. Sources are available here

After build of project and copy artifacts to virgo:

cd build-snaps

ant jar

cd ..

cp org.eclipse.virgo.snaps.api/target/artifacts/org.eclipse.virgo.snaps.api.jar ${virgo.home}/repository/usr/

cp org.eclipse.virgo.snaps.core/target/artifacts/org.eclipse.virgo.snaps.core.jar ${virgo.home}/repository/usr/

… and restart of server, we are ready to use snaps.

In samples dir there is example menu-bar showing idea of Snaps. In host bundle – animal.menu.bar we can see in top.jsp usage of taglib snaps:

  • “> ${snap.properties[‘link.text’]}

 

 

It is simple way to iterate through snaps associated with this host. Only thing which we must to do is to add this snippet to MANIFEST.MF:

Snap-Host: animal.menu.bar;version="[1.0, 2.0)"

Snap-ContextPath: /cat

In first line we are manifesting that this snap will be used as a part of host animal.menu.bar. In the second that all servlets will be deployed in this subcontext of context of host.

In this example also were used properties from file snap.properties which are available in session as attribute properties of snap.

After install host bundle at url: http://localhost:8080/animal-menu-bar we can see page without menu items. After installation of new items are become available.

You May Also Like

How to automate tests with Groovy 2.0, Spock and Gradle

This is the launch of the 1st blog in my life, so cheers and have a nice reading!

y u no test?

Couple of years ago I wasn't a big fan of unit testing. It was obvious to me that well prepared unit tests are crucial though. I didn't known why exactly crucial yet then. I just felt they are important. My disliking to write automation tests was mostly related to the effort necessary to prepare them. Also a spaghetti code was easily spotted in test sources.

Some goodies at hand

Now I know! Test are crucial to get a better design and a confidence. Confidence to improve without a hesitation. Moreover, now I have the tool to make test automation easy as Sunday morning... I'm talking about the Spock Framework. If you got here probably already know what the Spock is, so I won't introduce it. Enough to say that Spock is an awesome unit testing tool which, thanks to Groovy AST Transformation, simplifies creation of tests greatly.

An obstacle

The point is, since a new major version of Groovy has been released (2.0), there is no matching version of Spock available yet.

What now?

Well, in a matter of fact there is such a version. It's still under development though. It can be obtained from this Maven repository. We can of course use the Maven to build a project and run tests. But why not to go even more "groovy" way? XML is not for humans, is it? Lets use Gradle.

The build file

Update: at the end of the post is updated version of the build file.
apply plugin: 'groovy'
apply plugin: 'idea'

def langLevel = 1.7

sourceCompatibility = langLevel
targetCompatibility = langLevel

group = 'com.tamashumi.example.testwithspock'
version = '0.1'

repositories {
mavenLocal()
mavenCentral()
maven { url 'http://oss.sonatype.org/content/repositories/snapshots/' }
}

dependencies {
groovy 'org.codehaus.groovy:groovy-all:2.0.1'
testCompile 'org.spockframework:spock-core:0.7-groovy-2.0-SNAPSHOT'
}

idea {
project {
jdkName = langLevel
languageLevel = langLevel
}
}
As you can see the build.gradle file is almost self-explanatory. Groovy plugin is applied to compile groovy code. It needs groovy-all.jar - declared in version 2.0 at dependencies block just next to Spock in version 0.7. What's most important, mentioned Maven repository URL is added at repositories block.

Project structure and execution

Gradle's default project directory structure is similar to Maven's one. Unfortunately there is no 'create project' task and you have to create it by hand. It's not a big obstacle though. The structure you will create will more or less look as follows:
<project root>

├── build.gradle
└── src
├── main
│ ├── groovy
└── test
└── groovy
To build a project now you can type command gradle build or gradle test to only run tests.

How about Java?

You can test native Java code with Spock. Just add src/main/java directory and a following line to the build.gradle:
apply plugin: 'java'
This way if you don't want or just can't deploy Groovy compiled stuff into your production JVM for any reason, still whole goodness of testing with Spock and Groovy is at your hand.

A silly-simple example

Just to show that it works, here you go with a basic example.

Java simple example class:

public class SimpleJavaClass {

public int sumAll(int... args) {

int sum = 0;

for (int arg : args){
sum += arg;
}

return sum;
}
}

Groovy simple example class:

class SimpleGroovyClass {

String concatenateAll(char separator, String... args) {

args.join(separator as String)
}
}

The test, uhm... I mean the Specification:

class JustASpecification extends Specification {

@Unroll('Sums integers #integers into: #expectedResult')
def "Can sum different amount of integers"() {

given:
def instance = new SimpleJavaClass()

when:
def result = instance.sumAll(* integers)

then:
result == expectedResult

where:
expectedResult | integers
11 | [3, 3, 5]
8 | [3, 5]
254 | [2, 4, 8, 16, 32, 64, 128]
22 | [7, 5, 6, 2, 2]
}

@Unroll('Concatenates strings #strings with separator "#separator" into: #expectedResult')
def "Can concatenate different amount of integers with a specified separator"() {

given:
def instance = new SimpleGroovyClass()

when:
def result = instance.concatenateAll(separator, * strings)

then:
result == expectedResult

where:
expectedResult | separator | strings
'Whasup dude?' | ' ' as char | ['Whasup', 'dude?']
'2012/09/15' | '/' as char | ['2012', '09', '15']
'nice-to-meet-you' | '-' as char | ['nice', 'to', 'meet', 'you']
}
}
To run tests with Gradle simply execute command gradle test. Test reports can be found at <project root>/build/reports/tests/index.html and look kind a like this.


Please note that, thanks to @Unroll annotation, test is executed once per each parameters row in the 'table' at specification's where: block. This isn't a Java label, but a AST transformation magic.

IDE integration

Gradle's plugin for Iintellij Idea

I've added also Intellij Idea plugin for IDE project generation and some configuration for it (IDE's JDK name). To generate Idea's project files just run command: gradle idea There are available Eclipse and Netbeans plugins too, however I haven't tested them. Idea's one works well.

Intellij Idea's plugins for Gradle

Idea itself has a light Gradle support built-in on its own. To not get confused: Gradle has plugin for Idea and Idea has plugin for Gradle. To get even more 'pluginated', there is also JetGradle plugin within Idea. However I haven't found good reason for it's existence - well, maybe excluding one. It shows dependency tree. There is a bug though - JetGradle work's fine only for lang level 1.6. Strangely all the plugins together do not conflict each other. They even give complementary, quite useful tool set.

Running tests under IDE

Jest to add something sweet this is how Specification looks when run with jUnit  runner under Intellij Idea (right mouse button on JustASpecification class or whole folder of specification extending classes and select "Run ...". You'll see a nice view like this.

Building web application

If you need to build Java web application and bundle it as war archive just add plugin by typing the line
apply plugin: 'war'
in the build.gradle file and create a directory src/main/webapp.

Want to know more?

If you haven't heard about Spock or Gradle before or just curious, check the following links:

What next?

The last thing left is to write the real production code you are about to test. No matter will it be Groovy or Java, I leave this to your need and invention. Of course, you are welcome to post a comments here. I'll answer or even write some more posts about the subject.

Important update

Spock version 0.7 has been released, so the above build file doesn't work anymore. It's easy to fix it though. Just remove last dash and a word SNAPSHOT from Spock dependency declaration. Other important thing is that now spock-core depends on groovy-all-2.0.5, so to avoid dependency conflict groovy dependency should be changed from version 2.0.1 to 2.0.5.
Besides oss.sonata.org snapshots maven repository can be removed. No obstacles any more and the build file now looks as follows:
apply plugin: 'groovy'
apply plugin: 'idea'

def langLevel = 1.7

sourceCompatibility = langLevel
targetCompatibility = langLevel

group = 'com.tamashumi.example.testwithspock'
version = '0.1'

repositories {
mavenLocal()
mavenCentral()
}

dependencies {
groovy 'org.codehaus.groovy:groovy-all:2.0.5'
testCompile 'org.spockframework:spock-core:0.7-groovy-2.0'
}

idea {
project {
jdkName = langLevel
languageLevel = langLevel
}
}