Deep dive into Spring Boot Actuator HTTP metrics

Actuator Metrics

As reported in Michał Bobowski post, we heavily use Spring Boot Actuator metrics system based on Micrometer. It provides a set of practical metrics regarding JVM stats like CPU or memory utilization. Our applications have to meet the most sophisticated needs of our clients thus we try to take advantage of http.server.request endpoint.

Introduction

By default, Spring Boot Actuator gathers endpoint statistics for all classes annotated with @RestController. It registers a WebMvcMetricsFilter bean, which is responsible for timing a request. A special TimingContext attribute is attached to the request so that Spring Boot knows when the request started.

Actuator metrics model

When you call http://localhost:8080/actuator/metrics/http.server.request endpoint you will get something similar to this:

{
  "name": "http.server.requests",
  "description": null,
  "baseUnit": "milliseconds",
  "measurements": [
    {
      "statistic": "COUNT",
      "value": 12
    },
    {
      "statistic": "TOTAL_TIME",
      "value": 21487.256644
    },
    {
      "statistic": "MAX",
      "value": 2731.787888
    }
  ],
  "availableTags": [
    {
      "tag": "exception",
      "values": [
        "None",
        "RuntimeException"
      ]
    },
    {
      "tag": "method",
      "values": [
        "GET"
      ]
    },
    {
      "tag": "uri",
      "values": [
        "/example/success"
      ]
    },
    {
      "tag": "outcome",
      "values": [
        "SERVER_ERROR",
        "SUCCESS"
      ]
    },
    {
      "tag": "status",
      "values": [
        "500",
        "200"
      ]
    }
  ]
}

You will surely see the measurements section. It provides types and values of statistics recorded at a certain point in time. Types of statistics are ones described in Statistics enum.
Another one is the availableTags section, which contains a set of default tags distinguishing each metric by URI, status, or method. You can easily put your tags there like a host or container. If you want to check metric for a particular tag, Actuator lets you do this by using tag query http://localhost:8080/actuator/metrics/http.server.request?tag=status:200

Metric system model

However, each monitoring system has its own metrics model and therefore uses different names for the same things. In our case, we use Influx Registry.
Let’s look into InfluxMeterRegistry class implementation.

private Stream writeTimer(Timer timer) {
    final Stream fields = Stream.of(
        new Field("sum", timer.totalTime(getBaseTimeUnit())),
        new Field("count", timer.count()),
        new Field("mean", timer.mean(getBaseTimeUnit())),
        new Field("upper", timer.max(getBaseTimeUnit()))
    );

    return Stream.of(influxLineProtocol(timer.getId(), "histogram", fields));
}

We see which field in influx corresponds to actuators measurement. Moreover, our registry equips us with an additional mean field, which is basically TOTAL_TIME divided by COUNT. Therefore we don’t need to calculate it manually inside our monitoring system.

Summary

(1) Be aware that the Actuator metric model directly corresponds to Micrometer model
(2) When it comes to timing requests carefully choose the step in which metrics are exported
(3) Do not mix composing metric values with aggregations, selectors, and transformations, e.g. mean(mean)

You May Also Like

Phonegap / Cordova and cross domain ssl request problem on android.

In one app I have participated, there was a use case:
  • User fill up a form.
  • User submit the form.
  • System send data via https to server and show a response.
During development there wasn’t any problem, but when we were going to release production version then some unsuspected situation occurred. I prepare the production version accordingly with standard flow for Android environment:
  • ant release
  • align
  • signing
During conduct tests on that version, every time I try to submit the form, a connection error appear. In that situation, at the first you should check whitelist in cordova settings. Every URL you want to connect to, must be explicit type in:
res/xml/cordova.xml
If whitelist looks fine, the error is most likely caused by inner implementation of Android System. The Android WebView does not allow by default self-signed SSL certs. When app is debug-signed the SSL error is ignored, but if app is release-signed connection to untrusted services is blocked.



Workaround


You have to remember that secure connection to service with self-signed certificate is risky and unrecommended. But if you know what you are doing there is some workaround of the security problem. Behavior of method
CordovaWebViewClient.onReceivedSslError
must be changed.


Thus add new class extended CordovaWebViewClient and override ‘onReceivedSslError’. I strongly suggest to implement custom onReceiveSslError as secure as possible. I know that the problem occours when app try connect to example.domain.com and in spite of self signed certificate the domain is trusted, so only for that case the SslError is ignored.

public class MyWebViewClient extends CordovaWebViewClient {

   private static final String TAG = MyWebViewClient.class.getName();
   private static final String AVAILABLE_SLL_CN
= "example.domain.com";

   public MyWebViewClient(DroidGap ctx) {
       super(ctx);
   }

   @Override
   public void onReceivedSslError(WebView view,
SslErrorHandler handler,
android.net.http.SslError error) {

String errorSourceCName = error.getCertificate().
getIssuedTo().getCName();

       if( AVAILABLE_SLL_CN.equals(errorSourceCName) ) {
           Log.i(TAG, "Detect ssl connection error: " +
error.toString() +
„ so the error is ignored”);

           handler.proceed();
           return;
       }

       super.onReceivedSslError(view, handler, error);
   }
}
Next step is forcing yours app to  use custom implementation of WebViewClient.

public class Start extends DroidGap
{
   private static final String TAG = Start.class.getName();

   @Override
   public void onCreate(Bundle savedInstanceState)
   {
       super.onCreate(savedInstanceState);
       super.setIntegerProperty("splashscreen", R.drawable.splash);
       super.init();

       MyWebViewClient myWebViewClient = new MyWebViewClient(this);
       myWebViewClient.setWebView(this.appView);

       this.appView.setWebViewClient(myWebViewClient);
       
// yours code

   }
}
That is all ypu have to do if minSdk of yours app is greater or equals 8. In older version of Android there is no class
android.net.http.SslError
So in class MyCordovaWebViewClient class there are errors because compliator doesn’t see SslError class. Fortunately Android is(was) open source, so it is easy to find source of the class. There is no inpediments to ‘upgrade’ app and just add the file to project. I suggest to keep original packages. Thus after all operations the source tree looks like:

Class SslError placed in source tree. 
 Now the app created in release mode can connect via https to services with self-signed SSl certificates.