Vavr, Collections, and Java Stream API Collectors

Vavr is now a must-have for every modern Java 8+ project. It encourages writing code in a functional manner by providing a new persistent Collections API along with a set of new Functional Interfaces and monadic tools like Option, Try, Either, etc.

You can read more about it here.

Vavr’s Persistent Collections API

To provide useable immutable data structures, the whole Collections API needed to be redesigned from scratch.

The standard java.util.Collection interface contains methods that discourage immutability such as:

boolean add(E e);
boolean remove(Object o);
boolean addAll(Collection<? extends E> c);
boolean removeAll(Collection<?> c);

One might think that the problem is that those methods allow modifications of the particular collection instance, but this is not entirely true – with immutable data structures, each mutating operation needs to derive a new collection from the existing one. Simply put, each of those methods should be able to return a new instance of the collection.

Here, the whole collections hierarchy is restricted to returning boolean or void from mutating methods – which makes them suitable only for mutable implementations.

Of course, immutable implementations of java.util.Collection exist, but above-mentioned methods are simply forbidden. That’s how it looks like in the com.google.common.collect.ImmutableList:

/**
 * Guaranteed to throw an exception and leave the list unmodified.
 *
 * @throws UnsupportedOperationException always
 * @deprecated Unsupported operation.
 */
@Deprecated
@Override
public final void add(int index, E element) {
  throw new UnsupportedOperationException();
}

And this is far from perfect – even the simplest add() operation becomes a ceremony:

ImmutableList<Integer> original = ImmutableList.of(1);

List<Integer> modified = new ImmutableList.Builder<Integer>()
  .addAll(original)
  .add(2)
  .build();

A major redesign made it possible to interact with immutable collections more naturally and add some new exciting features:

import io.vavr.collection.List;
// ...

List<Integer> original = List.of(1);
List<Integer> modified = original.append(2);

modified.dropWhile(i -> i < 42);
modified.combinations();
modified.foldLeft(0 , Integer::sum)

Collecting Vavr’s Collections

One of the key features of the Java Stream API was the collect() API that made it possible to take elements from Stream and apply the provided strategy to them – in most cases that would be simply placing all elements in some collection.

Vavr’s collections have a method that provides the similar(but limited) functionality but it’s not being used often because almost all operations that were available only using Stream API, are available on the collection level in Vavr.

But… one of the method signatures of Vavr’s collect() is especially intriguing:

<R, A> R collect(java.util.stream.Collector<? super T, A, R> collector)

As you can see, Vavr’s collections are fully compatible with Stream API Collectors and we can use our favourite Collectors easily:

list.collect(Collectors.toList());
list.collect(Collectors.groupingBy(Integer::byteValue));

That might not be super useful for everyday use-cases because the most common operations are accessible without using Collectors but it’s comforting to know that Vavr’s functionality is a superset of Stream API’s (at least in terms of collect() semantics)

Collecting Everything

The interesting realization happens when we decide to investigate the type hierarchy in Vavr:

source: http://www.vavr.io/vavr-docs/

We can notice here that the Value resides on top collections hierarchy and this is where the collect() method mentioned above is defined.

If we look closer, it’s clear that classes like Option, Try, Either, Future, Lazy also implement the Value interface. The reasoning behind this is that they are all essentially containers for values – containers that can hold max up to one element.  

This makes them compatible with Stream API Collectors, as well:

Option.of(42)
  .collect(Collectors.toList());

Try.of(() -> URI.create("4comprehension.com"))
  .collect(Collectors.partitioningBy(URI::isAbsolute));

Summary

The redesign of the Collections API allowed the introduction of cool new methods, as well as achieving full interoperability with Java Stream API Collectors – which can also be applied to Vavr’s functional control structures like Option, Try, Either, Future, or Lazy.

The examples above use:

<dependency>
    <groupId>io.vavr</groupId>
    <artifactId>vavr-test</artifactId>
    <version>0.9.0</version>
</dependency>
You May Also Like

Context menu or Action buttons ?

Recently I was drawn into one of those UI "religious" disputes that has no easy answers and usually both sides are right. One of our web developers was trying out new web tech (with pretty rich widget library) and started to question himself about some basic usability decisions. The low level problem in this case is usually brought to "which widget should I use ?". I'm not fond of bringing the usability problems to questions: Should I use Tabs over Menu ? Or should I use Context menu instead of buttons panel ? But sometimes if time is crucial factor and other usability levels are by default not addressed at all - better developer that asks those basic questions than developer that do not question himself at all.

Grails session timeout without XML

This article shows clean, non hacky way of configuring featureful event listeners for Grails application servlet context. Feat. HttpSessionListener as a Spring bean example with session timeout depending on whether user account is premium or not.

Common approaches

Speaking of session timeout config in Grails, a default approach is to install templates with a command. This way we got direct access to web.xml file. Also more unnecessary files are created. Despite that unnecessary files are unnecessary, we should also remember some other common knowledge: XML is not for humans.

Another, a bit more hacky, way is to create mysterious scripts/_Events.groovy file. Inside of which, by using not less enigmatic closure: eventWebXmlEnd = { filename -> ... }we can parse and hack into web.xml with a help of XmlSlurper.
Even though lot of Grails plugins do it similar way, still it’s not really straightforward, is it? Besides, where’s the IDE support? Hello!?

Examples of both above ways can be seen on StackOverflow.

Simpler and cleaner way

By adding just a single line to the already generated init closure we have it done:
class BootStrap {

def init = { servletContext ->
servletContext.addListener(OurListenerClass)
}
}

Allrighty, this is enough to avoid XML. Sweets are served after the main course though :)

Listener as a Spring bean

Let us assume we have a requirement. Set a longer session timeout for premium user account.
Users are authenticated upon session creation through SSO.

To easy meet the requirements just instantiate the CustomTimeoutSessionListener as Spring bean at resources.groovy. We also going to need some source of the user custom session timeout. Let say a ConfigService.
beans = {    
customTimeoutSessionListener(CustomTimeoutSessionListener) {
configService = ref('configService')
}
}

With such approach BootStrap.groovy has to by slightly modified. To keep control on listener instantation, instead of passing listener class type, Spring bean is injected by Grails and the instance passed:
class BootStrap {

def customTimeoutSessionListener

def init = { servletContext ->
servletContext.addListener(customTimeoutSessionListener)
}
}

An example CustomTimeoutSessionListener implementation can look like:
import javax.servlet.http.HttpSessionEvent    
import javax.servlet.http.HttpSessionListener
import your.app.ConfigService

class CustomTimeoutSessionListener implements HttpSessionListener {

ConfigService configService

@Override
void sessionCreated(HttpSessionEvent httpSessionEvent) {
httpSessionEvent.session.maxInactiveInterval = configService.sessionTimeoutSeconds
}

@Override
void sessionDestroyed(HttpSessionEvent httpSessionEvent) { /* nothing to implement */ }
}
Having at hand all power of the Spring IoC this is surely a good place to load some persisted user’s account stuff into the session or to notify any other adequate bean about user presence.

Wait, what about the user context?

Honest answer is: that depends on your case. Yet here’s an example of getSessionTimeoutMinutes() implementation using Spring Security:
import org.springframework.security.core.context.SecurityContextHolder    

class ConfigService {

static final int 3H = 3 * 60 * 60
static final int QUARTER = 15 * 60

int getSessionTimeoutSeconds() {

String username = SecurityContextHolder.context?.authentication?.principal
def account = Account.findByUsername(username)

return account?.premium ? 3H : QUARTER
}
}
This example is simplified. Does not contain much of defensive programming. Just an assumption that principal is already set and is a String - unique username. Thanks to Grails convention our ConfigService is transactional so the Account domain class can use GORM dynamic finder.
OK, config fetching implementation details are out of scope here anyway. You can get, load, fetch, obtain from wherever you like to. Domain persistence, principal object, role config, external file and so on...

Any gotchas?

There is one. When running grails test command, servletContext comes as some mocked class instance without addListener method. Thus we going to have a MissingMethodException when running tests :(

Solution is typical:
def init = { servletContext ->
if (Environment.current != Environment.TEST) {
servletContext.addListener(customTimeoutSessionListener)
}
}
An unnecessary obstacle if you ask me. Should I submit a Jira issue about that?

TL;DR

Just implement a HttpSessionListener. Create a Spring bean of the listener. Inject it into BootStrap.groovy and call servletContext.addListener(injectedListener).