TouK Hackathon – April 2021

The last time we wanted to organize a Hackathon our plans were thwarted by “you know what”. This state of affairs has lasted so long that we just couldn’t stand it anymore and launched the next edition of The Hackathon – remotely. This time we had to cope with new conditions – not all together in an open space, but everyone at home. We launched the communicator with a separate room per each project and went into action.
Here we present a brief summary from each team.

RCB Alert

tcb sms screenshot Every now and then we have a problem in our company – we need to inform everyone that the next day some loud redecorating is to take place or our air conditioning is to be cleaned – and we had better work remotely that day.
Unfortunately, sometimes our office managers gain this knowledge after our working hours, so there is no channel to notify everyone (hopefully – no one reads emails at home).

We found a solution to this problem during our last Hackathon.
We wrote a piece of software that orders an SMS to be sent to each person subscribed to TCB Alerts (it’s a pun on our government alerts – RCB).
This was the easy part – as we already had an SMS sending service.
However, we wanted this solution to be as easy as possible, so our office managers don’t have to open their laptops, connect to a VPN, search for special forms etc.
We decided to implement it as a hook to our communicator – RocketChat.
Now, when our office managers need to inform everyone in the evening, they need only to open the RocketChat app on their phone and type a message on a special channel – and that’s it!

We hope that this solution will help us to stay at home and work remotely during the days when it is inconvenient to work from the office.

TouK AboutMe

about me screenshot Currently at TouK we have several selfcare services providing information about TouKs (people working or cooperating with TouK).
The aim of our project was to join these services into one. Of course we know the rule that if you have three separate services then the worst approach is to add a new one. For this reason we enriched the most modern of them with new features such as TouK’s search, adding new information about people, teams information management and much more.
During the hackathon our team of four (+ the business owner) learnt a lot about frontend technologies such as CORS, MongoDB and LDAP.
We all hope that our work will prove to be useful for both current and future TouKs. Our team strove to provide a user experience so seamless that users would wonder at how easy selfcare management could be. We trust that with this hackathon we are a step closer to achieving that goal.

Business Config Manager

During our deployments of Nussknacker we often have the situation that the flow of development of scenarios was done by two teams. One of them is a team called “Configurators” – people who are close to business requirements but also with quite a high level of technical skills. Those people are responsible for the development of scenarios on the Nussknacker side. On the other hand, the second team is made up of Business members, those with lower technical skills but with a good knowledge of customer needs.
Configurators want to outsource some steps of development to business – so some changes can be made faster, without involving Configurators in the process. We found out that we should make a tool that can give Configurators the ability to create definitions of some configurations and after that, Business can fill in the values of those configurations. In the end, this configuration will be used in some steps of the scenario in Nussknacker.

After the deployment of the proof of concept, we realized that it is necessary to handle some important things:

  • Both definitions of configurations and values should be versioned and have some audit information, such as the author and time of the change.
  • Migrations of changes in definitions should be painless.
  • We should support many types of properties: from raw strings to some date time pickers and so on.
  • Configurations should have a lifecycle, so new ideas can be deployed on a lower environment and after some tests can be promoted to higher env.

After brainstorming before the Hackathon, we decided to use modern stack, but with some solid, battle-tested components:

We also designed the domain level of application.

On the first day of the Hackathon, we started with pair programming. We tried to go through all layers of the application to make sure that everyone in the team has a common vision of what the architecture will look like. After that we split the work into four separate parts:

  • Management of definitions
  • Management of values
  • Nussknacker integration with Business Config Service
  • Web application Finally, we integrated all the features together and completed the MVP step.

The project ended successfully. We proved that our design was correct, prepared a solid foundation for future development, and had a lot of fun designing the architecture and testing new tools.

Nussknacker Serverless

Most of you probably know Nussknacker – a powerful platform which allows non-technical users to author and deploy streaming scenarios on Apache Flink.
But Nussknacker Designer can also describe more business rules-oriented scenarios – used e.g. in recommendations or NBA domains. In this case, the scenario is deployed as a REST microservice. During the Hackathon we decided to make this setup more Kubernetes/Serverless-oriented. We decided that a Nussknacker scenario is a good candidate for K8 CRD and that KNative will provide us with a serverless deployment platform.
In two days we reached most of our goals:

  • Nussknacker creating scenario ConfigMap during deployment (in the future it will be CRD)
  • Custom Kubernetes operator/controller which transforms scenario ConfigMap into KNative service (scaling down to zero if needed :))
  • Simple REST microservice image, which serves the scenario
  • Everything deployed via Helm/GitlabCI to our DigitalOcean K8 cluster
    We are also pretty excited about the next steps – scenario observability (metrics, statuses), CRDs and making our serving image serverless ready – by using GraalVM native images.
    Hopefully, in the short to medium term, all of this will be accessible with our Nussknacker offering.

MusicBox

music box screenshot We have created a minimalistic web app for generating music in a loop based on text input.
The idea is to make writing music as easy as possible. E.g. |k h s h | is the most basic percussive beat, while |Am|C| gives a basic chord progression. Furthermore, there’s a collaborative mode (think jam sessions ;).

Frontend:

Backend:

Summary

In our opinion, The Hackathon was successful and fulfilled its task – that is, it allowed us to take a short break from our more important work and experiment with various fun technologies in good company. The fact that during the Hackathon team members were in a voice chat with each other certainly played a big role, which to some extent allowed us to build an atmosphere of cooperation in the fight against challenges.
We are already looking forward to the next hackathon – hopefully, this time on site.

If you want, here you can see what we did during the previous edition.

You May Also Like

Multi module Gradle project with IDE support

This article is a short how-to about multi-module project setup with usage of the Gradle automation build tool.

Here's how Rich Seller, a StackOverflow user, describes Gradle:
Gradle promises to hit the sweet spot between Ant and Maven. It uses Ivy's approach for dependency resolution. It allows for convention over configuration but also includes Ant tasks as first class citizens. It also wisely allows you to use existing Maven/Ivy repositories.
So why would one use yet another JVM build tool such as Gradle? The answer is simple: to avoid frustration involved by Ant or Maven.

Short story

I was fooling around with some fresh proof of concept and needed a build tool. I'm pretty familiar with Maven so created project from an artifact, and opened the build file, pom.xml for further tuning.
I had been using Grails with its own build system (similar to Gradle, btw) already for some time up then, so after quite a time without Maven, I looked on the pom.xml and found it to be really repulsive.

Once again I felt clearly: XML is not for humans.

After quick googling I found Gradle. It was still in beta (0.8 version) back then, but it's configured with Groovy DSL and that's what a human likes :)

Where are we

In the time Ant can be met but among IT guerrillas, Maven is still on top and couple of others like for example Ivy conquer for the best position, Gradle smoothly went into its mature age. It's now available in 1.3 version, released at 20th of November 2012. I'm glad to recommend it to anyone looking for relief from XML configured tools, or for anyone just looking for simple, elastic and powerful build tool.

Lets build

I have already written about basic project structure so I skip this one, reminding only the basic project structure:
<project root>

├── build.gradle
└── src
├── main
│ ├── java
│ └── groovy

└── test
├── java
└── groovy
Have I just referred myself for the 1st time? Achievement unlocked! ;)

Gradle as most build tools is run from a command line with parameters. The main parameter for Gradle is a 'task name', for example we can run a command: gradle build.
There is no 'create project' task, so the directory structure has to be created by hand. This isn't a hassle though.
Java and groovy sub-folders aren't always mandatory. They depend on what compile plugin is used.

Parent project

Consider an example project 'the-app' of three modules, let say:
  1. database communication layer
  2. domain model and services layer
  3. web presentation layer
Our project directory tree will look like:
the-app

├── dao-layer
│ └── src

├── domain-model
│ └── src

├── web-frontend
│ └── src

├── build.gradle
└── settings.gradle
the-app itself has no src sub-folder as its purpose is only to contain sub-projects and build configuration. If needed it could've been provided with own src though.

To glue modules we need to fill settings.gradle file under the-app directory with a single line of content specifying module names:
include 'dao-layer', 'domain-model', 'web-frontend'
Now the gradle projects command can be executed to obtain such a result:
:projects

------------------------------------------------------------
Root project
------------------------------------------------------------

Root project 'the-app'
+--- Project ':dao-layer'
+--- Project ':domain-model'
\--- Project ':web-frontend'
...so we know that Gradle noticed the modules. However gradle build command won't run successful yet because build.gradle file is still empty.

Sub project

As in Maven we can create separate build config file per each module. Let say we starting from DAO layer.
Thus we create a new file the-app/dao-layer/build.gradle with a line of basic build info (notice the new build.gradle was created under sub-project directory):
apply plugin: 'java'
This single line of config for any of modules is enough to execute gradle build command under the-app directory with following result:
:dao-layer:compileJava
:dao-layer:processResources UP-TO-DATE
:dao-layer:classes
:dao-layer:jar
:dao-layer:assemble
:dao-layer:compileTestJava UP-TO-DATE
:dao-layer:processTestResources UP-TO-DATE
:dao-layer:testClasses UP-TO-DATE
:dao-layer:test
:dao-layer:check
:dao-layer:build

BUILD SUCCESSFUL

Total time: 3.256 secs
To use Groovy plugin slightly more configuration is needed:
apply plugin: 'groovy'

repositories {
mavenLocal()
mavenCentral()
}

dependencies {
groovy 'org.codehaus.groovy:groovy-all:2.0.5'
}
At lines 3 to 6 Maven repositories are set. At line 9 dependency with groovy library version is specified. Of course plugin as 'java', 'groovy' and many more can be mixed each other.

If we have settings.gradle file and a build.gradle file for each module, there is no need for parent the-app/build.gradle file at all. Sure that's true but we can go another, better way.

One file to rule them all

Instead of creating many build.gradle config files, one per each module, we can use only the parent's one and make it a bit more juicy. So let us move the the-app/dao-layer/build.gradle a level up to the-app/build-gradle and fill it with new statements to achieve full project configuration:
def langLevel = 1.7

allprojects {

apply plugin: 'idea'

group = 'com.tamashumi'
version = '0.1'
}

subprojects {

apply plugin: 'groovy'

sourceCompatibility = langLevel
targetCompatibility = langLevel

repositories {
mavenLocal()
mavenCentral()
}

dependencies {
groovy 'org.codehaus.groovy:groovy-all:2.0.5'
testCompile 'org.spockframework:spock-core:0.7-groovy-2.0'
}
}

project(':dao-layer') {

dependencies {
compile 'org.hibernate:hibernate-core:4.1.7.Final'
}
}

project(':domain-model') {

dependencies {
compile project(':dao-layer')
}
}

project(':web-frontend') {

apply plugin: 'war'

dependencies {
compile project(':domain-model')
compile 'org.springframework:spring-webmvc:3.1.2.RELEASE'
}
}

idea {
project {
jdkName = langLevel
languageLevel = langLevel
}
}
At the beginning simple variable langLevel is declared. It's worth knowing that we can use almost any Groovy code inside build.gradle file, statements like for example if conditions, for/while loops, closures, switch-case, etc... Quite an advantage over inflexible XML, isn't it?

Next the allProjects block. Any configuration placed in it will influence - what a surprise - all projects, so the parent itself and sub-projects (modules). Inside of the block we have the IDE (Intellij Idea) plugin applied which I wrote more about in previous article (look under "IDE Integration" heading). Enough to say that with this plugin applied here, command gradle idea will generate Idea's project files with modules structure and dependencies. This works really well and plugins for other IDEs are available too.
Remaining two lines at this block define group and version for the project, similar as this is done by Maven.

After that subProjects block appears. It's related to all modules but not the parent project. So here the Groovy language plugin is applied, as all modules are assumed to be written in Groovy.
Below source and target language level are set.
After that come references to standard Maven repositories.
At the end of the block dependencies to groovy version and test library - Spock framework.

Following blocks, project(':module-name'), are responsible for each module configuration. They may be omitted unless allProjects or subProjects configure what's necessary for a specific module. In the example per module configuration goes as follow:
  • Dao-layer module has dependency to an ORM library - Hibernate
  • Domain-model module relies on dao-layer as a dependency. Keyword project is used here again for a reference to other module.
  • Web-frontend applies 'war' plugin which build this module into java web archive. Besides it referes to domain-model module and also use Spring MVC framework dependency.

At the end in idea block is basic info for IDE plugin. Those are parameters corresponding to the Idea's project general settings visible on the following screen shot.


jdkName should match the IDE's SDK name otherwise it has to be set manually under IDE on each Idea's project files (re)generation with gradle idea command.

Is that it?

In the matter of simplicity - yes. That's enough to automate modular application build with custom configuration per module. Not a rocket science, huh? Think about Maven's XML. It would take more effort to setup the same and still achieve less expressible configuration quite far from user-friendly.

Check the online user guide for a lot of configuration possibilities or better download Gradle and see the sample projects.
As a tasty bait take a look for this short choice of available plugins:
  • java
  • groovy
  • scala
  • cpp
  • eclipse
  • netbeans
  • ida
  • maven
  • osgi
  • war
  • ear
  • sonar
  • project-report
  • signing
and more, 3rd party plugins...

Mentoring in Software Craftsmanship

Maria Diaconu and  Alexandru Bolboaca are both strong supporters of Software Craftsmanship and Agile movements in Romania, with years of experience as developers, leaders, architects, managers and instructors. On their lecture at Agile Central Eur...Maria Diaconu and  Alexandru Bolboaca are both strong supporters of Software Craftsmanship and Agile movements in Romania, with years of experience as developers, leaders, architects, managers and instructors. On their lecture at Agile Central Eur...