Primitives and its wrapped types compatibility

IntroductionHow often do you think about possible changes in your API? Do you consider that something required could become optional in future? How about compatibility of such change? One of this changes is going from primitive (e. g. int) to its wrapp…

Introduction

How often do you think about possible changes in your API? Do you consider that something required could become optional in future? How about compatibility of such change? One of this changes is going from primitive (e. g. int) to its wrapped type (e. g. Integer). Let’s check it out.

API – first iteration

Let’s start with simple DTO class Dep in our public API.

public class Dep {
    private int f1;

public int getF1(){
return f1;
}

public void setF1(int f1){
this.f1 = f1;
}

// other fields and methods omitted
}

f1 is obligatory field that never will be null.

Let’s use it in Main class:

public class Main {
    public static void main(String... args) {
        Dep dep = new Dep();
        dep.setF1(123);
        System.out.println(dep.getF1());
    }
}

compile it:

$ javac depInt/Dep.java
$ javac -cp depInt main/Main.java

and run:

$ java -cp depInt:main Main
123

It works.

API – obligatory field become optional

Now suppose our business requirements have changed. f1 is not longer obligatory and we want possibility to set it to null.

So we provide next iteration of Dep class where f1 field has type Integer.

public class Dep {
    private Integer f1;

public Integer getF1(){
return f1;
}

public void setF1(Integer f1){
this.f1 = f1;
}

// other fields and methods omitted
}

We compile only the new Dep class because we do not want to change the Main class:

$ javac depInteger/Dep.java

and run it with old Main:

$ java -cp depInteger:main Main
Exception in thread "main" java.lang.NoSuchMethodError: Dep.setF1(I)V
    at Main.main(Main.java:4)

Wow! It does not work…

Why does it not work?

We can use javap tool to investigate Main class.

$ javap -c main/Main.class
Compiled from "Main.java"
public class Main {
  public Main();
    Code:
       0: aload_0
       1: invokespecial #1                  // Method java/lang/Object."<init>":()V
       4: return

public static void main(java.lang.String…);
Code:
0: new #2 // class Dep
3: dup
4: invokespecial #3 // Method Dep.”<init>”:()V
7: astore_1
8: aload_1
9: bipush 123
11: invokevirtual #4 // Method Dep.setF1:(I)V
14: getstatic #5 // Field java/lang/System.out:Ljava/io/PrintStream;
17: aload_1
18: invokevirtual #6 // Method Dep.getF1:()I
21: invokevirtual #7 // Method java/io/PrintStream.println:(I)V
24: return
}

The most important are 11th and 18th instructions of main method. Main lookups for methods which use int (I in method signature).

Next let’s compile the Main class with Dep which has f1 of type Integer:

javac -cp depInteger main/Main.java

and use javap on this class:

$ javap -c main/Main.class
Compiled from "Main.java"
public class Main {
  public Main();
    Code:
       0: aload_0
       1: invokespecial #1                  // Method java/lang/Object."<init>":()V
       4: return

public static void main(java.lang.String…);
Code:
0: new #2 // class Dep
3: dup
4: invokespecial #3 // Method Dep.”<init>”:()V
7: astore_1
8: aload_1
9: bipush 123
11: invokestatic #4 // Method java/lang/Integer.valueOf:(I)Ljava/lang/Integer;
14: invokevirtual #5 // Method Dep.setF1:(Ljava/lang/Integer;)V
17: getstatic #6 // Field java/lang/System.out:Ljava/io/PrintStream;
20: aload_1
21: invokevirtual #7 // Method Dep.getF1:()Ljava/lang/Integer;
24: invokevirtual #8 // Method java/io/PrintStream.println:(Ljava/lang/Object;)V
27: return
}

Now we see the difference. The main method:

  • converts int to Integer in instruction 11th,
  • invokes method setF1 which takes parameter of type Integer (Ljava/lang/Integer;) in instruction 14th,
  • invokes method getF1 which returns Integer in instruction 21st.

These differences do not allow us to use the Main class with Dep without recompilation if we change f1.

How about Groovy?

We have GroovyMain class which do the same as Main class written in Java.

class GroovyMain {
    static void main(String... args) {
        Dep dep = new Dep(f1: 123)
        println(dep.f1)
    }
}

We will compile GroovyMain class only with Dep which uses int:

$ groovyc -cp lib/groovy-all-2.4.5.jar:depInt -d main main/GroovyMain.groovy

It runs great as expected with int:

$ java -cp lib/groovy-all-2.4.5.jar:depInt:main GroovyMain
123

but with Integer… It works the same!

$ java -cp lib/groovy-all-2.4.5.jar:depInteger:main GroovyMain
123

Groovy is immune to such change.

With CompileStatic

But what if we compile groovy with CompileStatic annotation? This annotation instructs groovy compiler to compile class with type checking and should produce bytecode similar to javac output.

GroovyMainCompileStatic class is GroovyMain class with only CompileStatic annotation:

import groovy.transform.CompileStatic

@CompileStatic
class GroovyMainCompileStatic {
static void main(String… args) {
Dep dep = new Dep(f1: 123)
println(dep.f1)
}
}

When we compile this with Dep with int field:

$ groovyc -cp lib/groovy-all-2.4.5.jar:depInt -d main main/GroovyMainCompileStatic.groovy

then of course it works:

$ java -cp lib/groovy-all-2.4.5.jar:depInt:main GroovyMainCompileStatic
123

but with Dep with Integer field it fails like in Java:

$ java -cp lib/groovy-all-2.4.5.jar:depInteger:main GroovyMainCompileStatic
Exception in thread "main" java.lang.NoSuchMethodError: Dep.setF1(I)V
    at GroovyMainCompileStatic.main(GroovyMainCompileStatic.groovy:6)

Conclusion

Change from primitive to its wrapped java type is not compatible change. Bytecode which uses dependent class assumes that there will be method which consumes or returns e. g. int and cannot deal with the same class which provides such method with Integer in place of int.

Groovy is much more flexible and could handle it, but only if we do not use CompileStatic annotation.

The source code is available here.

You May Also Like

JBoss Envers and Spring transaction managers

I've stumbled upon a bug with my configuration for JBoss Envers today, despite having integration tests all over the application. I have to admit, it casted a dark shadow of doubt about the value of all the tests for a moment. I've been practicing TDD since 2005, and frankly speaking, I should have been smarter than that.

My fault was simple. I've started using Envers the right way, with exploratory tests and a prototype. Then I've deleted the prototype and created some integration tests using in-memory H2 that looked more or less like this example:

@Test
public void savingAndUpdatingPersonShouldCreateTwoHistoricalVersions() {
    //given
    Person person = createAndSavePerson();
    String oldFirstName = person.getFirstName();
    String newFirstName = oldFirstName + "NEW";

    //when
    updatePersonWithNewName(person, newFirstName);

    //then
    verifyTwoHistoricalVersionsWereSaved(oldFirstName, newFirstName);
}

private Person createAndSavePerson() {
    Transaction transaction = session.beginTransaction();
    Person person = PersonFactory.createPerson();
    session.save(person);
    transaction.commit();
    return person;
}    

private void updatePersonWithNewName(Person person, String newName) {
    Transaction transaction = session.beginTransaction();
    person.setFirstName(newName);
    session.update(person);
    transaction.commit();
}

private void verifyTwoHistoricalVersionsWereSaved(String oldFirstName, String newFirstName) {
    List<Object[]> personRevisions = getPersonRevisions();
    assertEquals(2, personRevisions.size());
    assertEquals(oldFirstName, ((Person)personRevisions.get(0)[0]).getFirstName());
    assertEquals(newFirstName, ((Person)personRevisions.get(1)[0]).getFirstName());
}

private List<Object[]> getPersonRevisions() {
    Transaction transaction = session.beginTransaction();
    AuditReader auditReader = AuditReaderFactory.get(session);
    List<Object[]> personRevisions = auditReader.createQuery()
            .forRevisionsOfEntity(Person.class, false, true)
            .getResultList();
    transaction.commit();
    return personRevisions;
}

Because Envers inserts audit data when the transaction is commited (in a new temporary session), I thought I have to create and commit the transaction manually. And that is true to some point.

My fault was that I didn't have an end-to-end integration/acceptance test, that would call to entry point of the application (in this case a service which is called by GWT via RPC), because then I'd notice, that the Spring @Transactional annotation, and calling transaction.commit() are two, very different things.

Spring @Transactional annotation will use a transaction manager configured for the application. Envers on the other hand is used by subscribing a listener to hibernate's SessionFactory like this:

<bean id="sessionFactory" class="org.springframework.orm.hibernate3.annotation.AnnotationSessionFactoryBean" >        
...
 <property name="eventListeners">
     <map key-type="java.lang.String" value-type="org.hibernate.event.EventListeners">
         <entry key="post-insert" value-ref="auditEventListener"/>
         <entry key="post-update" value-ref="auditEventListener"/>
         <entry key="post-delete" value-ref="auditEventListener"/>
         <entry key="pre-collection-update" value-ref="auditEventListener"/>
         <entry key="pre-collection-remove" value-ref="auditEventListener"/>
         <entry key="post-collection-recreate" value-ref="auditEventListener"/>
     </map>
 </property>
</bean>

<bean id="auditEventListener" class="org.hibernate.envers.event.AuditEventListener" />

Envers creates and collects something called AuditWorkUnits whenever you update/delete/insert audited entities, but audit tables are not populated until something calls AuditProcess.beforeCompletion, which makes sense. If you are using org.hibernate.transaction.JDBCTransaction manually, this is called on commit() when notifying all subscribed javax.transaction.Synchronization objects (and enver's AuditProcess is one of them).

The problem was, that I used a wrong transaction manager.

<bean id="transactionManager" class="org.springframework.jdbc.datasource.DataSourceTransactionManager" >
    <property name="dataSource" ref="dataSource"/>
</bean>

This transaction manager doesn't know anything about hibernate and doesn't use org.hibernate.transaction.JDBCTransaction. While Synchronization is an interface from javax.transaction package, DataSourceTransactionManager doesn't use it (maybe because of simplicity, I didn't dig deep enough in org.springframework.jdbc.datasource), and thus Envers works fine except not pushing the data to the database.

Which is the whole point of using Envers.

Use right tools for the task, they say. The whole problem is solved by using a transaction manager that is well aware of hibernate underneath.

<bean id="transactionManager" class="org.springframework.orm.hibernate3.HibernateTransactionManager" >
    <property name="sessionFactory" ref="sessionFactory"/>
</bean>

Lesson learned: always make sure your acceptance tests are testing the right thing. If there is a doubt about the value of your tests, you just don't have enough of them,

HISE

HISE stands for Human Interactions Service Engine.I have recently posted a proposal, which was accepted by Apache ODE PMC, which means the development will start soon.If you are interested in this project, you are welcome to join us.HISE stands for Human Interactions Service Engine.I have recently posted a proposal, which was accepted by Apache ODE PMC, which means the development will start soon.If you are interested in this project, you are welcome to join us.