Spring autowire with qualifiers

Introduction

Autowired is great annotation, which by default inject beans by type to annotated element (constructor, setter or field). But how to use it, when there is more than one bean of requested type.

Autowired with one bean

Suppose we will work with small interface:

interface IHeaderPrinter {
String printHeader(String header)
}

When we have only one bean implementing IHeaderPrinter:

@Component
class HtmlHeaderPrinter implements IHeaderPrinter{
@Override
String printHeader(String header) {
return "<h1>$header</h1>"
}
}

then everything works great and test passes.

@Autowired
IHeaderPrinter headerPrinter

@Test
void shouldPrintHtmlHeader() {
assert headerPrinter.printHeader('myTitle') == '<h1>myTitle</h1>'
}

Two implementations

But what will happen, if we add another implementation of IHeaderPrinter, e. g. MarkdownHeaderPrinter?

@Component
class MarkdownHeaderPrinter implements IHeaderPrinter {
@Override
String printHeader(String header) {
return "# $header"
}
}

Now out test with fail with exception:

Error creating bean with name 'com.blogspot.przybyszd.spring.autowire.SpringAutowireWithQualifiersApplicationTests': Injection of autowired dependencies failed; nested exception is org.springframework.beans.factory.BeanCreationException: Could not autowire field: private com.blogspot.przybyszd.spring.autowire.IHeaderPrinter com.blogspot.przybyszd.spring.autowire.SpringAutowireWithQualifiersApplicationTests.headerPrinter; nested exception is org.springframework.beans.factory.NoUniqueBeanDefinitionException: No qualifying bean of type [com.blogspot.przybyszd.spring.autowire.IHeaderPrinter] is defined: expected single matching bean but found 2: markdownHeaderPrinter,htmlHeaderPrinter

We have to decide which implementation we want to use in our test, so …

Two implementations with Qualifier

Each bean is registered with name equal its class. For example HtmlHeaderPrinter is named htmlHeaderPrinter. The name is also its qualifier. We have to tell Autowired, that it should inject htmlHeaderPrinter:

@Autowired
@Qualifier('htmlHeaderPrinter')
IHeaderPrinter headerPrinter

Now our test passes again.

Two implementations qualified by field name

If field is names like implementing class (for example htmlHeaderPrinter), then this class implementation will be injected:

@Autowired
IHeaderPrinter htmlHeaderPrinter

And test passes:

@Test
void shouldPrintHtmlHeader() {
assert htmlHeaderPrinter.printHeader('myTitle') == '<h1>myTitle</h1>'
}

Thanks to @marcinjasion.

Two implementation with Primary

We often have one implementation which we almost always want to inject, so do we still have to put Qualifier with its name wherever we want to use it? No.

We could mark one implementation as Primary and this bean will be wired by default (unless we explicit give another Qualifier to use injection point):

@Component
@Primary
class HtmlHeaderPrinter implements IHeaderPrinter{
// ...
}
@Autowired
IHeaderPrinter headerPrinter

Summary

Autowired annotation allows us to inject dependencies to beans. It works great without additional configuration, when each bean could be uniquely find by type. When we have more than one bean, that could be injected, we have to use Qualifier or Primary annotation to help it find desired implementation.

Source code is available here.

You May Also Like

JBoss Envers and Spring transaction managers

I've stumbled upon a bug with my configuration for JBoss Envers today, despite having integration tests all over the application. I have to admit, it casted a dark shadow of doubt about the value of all the tests for a moment. I've been practicing TDD since 2005, and frankly speaking, I should have been smarter than that.

My fault was simple. I've started using Envers the right way, with exploratory tests and a prototype. Then I've deleted the prototype and created some integration tests using in-memory H2 that looked more or less like this example:

@Test
public void savingAndUpdatingPersonShouldCreateTwoHistoricalVersions() {
    //given
    Person person = createAndSavePerson();
    String oldFirstName = person.getFirstName();
    String newFirstName = oldFirstName + "NEW";

    //when
    updatePersonWithNewName(person, newFirstName);

    //then
    verifyTwoHistoricalVersionsWereSaved(oldFirstName, newFirstName);
}

private Person createAndSavePerson() {
    Transaction transaction = session.beginTransaction();
    Person person = PersonFactory.createPerson();
    session.save(person);
    transaction.commit();
    return person;
}    

private void updatePersonWithNewName(Person person, String newName) {
    Transaction transaction = session.beginTransaction();
    person.setFirstName(newName);
    session.update(person);
    transaction.commit();
}

private void verifyTwoHistoricalVersionsWereSaved(String oldFirstName, String newFirstName) {
    List<Object[]> personRevisions = getPersonRevisions();
    assertEquals(2, personRevisions.size());
    assertEquals(oldFirstName, ((Person)personRevisions.get(0)[0]).getFirstName());
    assertEquals(newFirstName, ((Person)personRevisions.get(1)[0]).getFirstName());
}

private List<Object[]> getPersonRevisions() {
    Transaction transaction = session.beginTransaction();
    AuditReader auditReader = AuditReaderFactory.get(session);
    List<Object[]> personRevisions = auditReader.createQuery()
            .forRevisionsOfEntity(Person.class, false, true)
            .getResultList();
    transaction.commit();
    return personRevisions;
}

Because Envers inserts audit data when the transaction is commited (in a new temporary session), I thought I have to create and commit the transaction manually. And that is true to some point.

My fault was that I didn't have an end-to-end integration/acceptance test, that would call to entry point of the application (in this case a service which is called by GWT via RPC), because then I'd notice, that the Spring @Transactional annotation, and calling transaction.commit() are two, very different things.

Spring @Transactional annotation will use a transaction manager configured for the application. Envers on the other hand is used by subscribing a listener to hibernate's SessionFactory like this:

<bean id="sessionFactory" class="org.springframework.orm.hibernate3.annotation.AnnotationSessionFactoryBean" >        
...
 <property name="eventListeners">
     <map key-type="java.lang.String" value-type="org.hibernate.event.EventListeners">
         <entry key="post-insert" value-ref="auditEventListener"/>
         <entry key="post-update" value-ref="auditEventListener"/>
         <entry key="post-delete" value-ref="auditEventListener"/>
         <entry key="pre-collection-update" value-ref="auditEventListener"/>
         <entry key="pre-collection-remove" value-ref="auditEventListener"/>
         <entry key="post-collection-recreate" value-ref="auditEventListener"/>
     </map>
 </property>
</bean>

<bean id="auditEventListener" class="org.hibernate.envers.event.AuditEventListener" />

Envers creates and collects something called AuditWorkUnits whenever you update/delete/insert audited entities, but audit tables are not populated until something calls AuditProcess.beforeCompletion, which makes sense. If you are using org.hibernate.transaction.JDBCTransaction manually, this is called on commit() when notifying all subscribed javax.transaction.Synchronization objects (and enver's AuditProcess is one of them).

The problem was, that I used a wrong transaction manager.

<bean id="transactionManager" class="org.springframework.jdbc.datasource.DataSourceTransactionManager" >
    <property name="dataSource" ref="dataSource"/>
</bean>

This transaction manager doesn't know anything about hibernate and doesn't use org.hibernate.transaction.JDBCTransaction. While Synchronization is an interface from javax.transaction package, DataSourceTransactionManager doesn't use it (maybe because of simplicity, I didn't dig deep enough in org.springframework.jdbc.datasource), and thus Envers works fine except not pushing the data to the database.

Which is the whole point of using Envers.

Use right tools for the task, they say. The whole problem is solved by using a transaction manager that is well aware of hibernate underneath.

<bean id="transactionManager" class="org.springframework.orm.hibernate3.HibernateTransactionManager" >
    <property name="sessionFactory" ref="sessionFactory"/>
</bean>

Lesson learned: always make sure your acceptance tests are testing the right thing. If there is a doubt about the value of your tests, you just don't have enough of them,