Validation with warnings in scala with scalaz

Monad are containers with ‘special powers’, when it comes to applying function over its content.Validation special power is propagating Failure over validation process.If you are not familiar with scalaz.Validation I urge you to read this example,…

Monad are containers with ‘special powers’, when it comes to applying function over its content.
Validation special power is propagating Failure over validation process.

If you are not familiar with scalaz.Validation I urge you to read this example, which shows how to use Validation: A Tale of 3 Nightclubs

Basically validation looks like this:

Scalaz.Validation uses idiomatic scala way to compose monads by For Comprehension.

Concrete validation method, returning scalaz.Validation instances looks like this:

Scalaz provide helper methods for wrapping values into Failure or Success.

To sum it up. Validation is a an elegant way to handle application validation logic.

However it’s not enough.

Our business rules require application logic’s to perform validation with warnings, which should not propagate as failures, but rather propagate independently of Success/Failure types.

We liked monad approach to data validation so we wanted to keep it that way.

Let me introduce Validation with warnings

What it does is basically wrapping scalaz.Validation into another type responsible for carrying warnings over validation process

Thank to scala type inference our validation code look’s just the same, but now for expression operates on ValidationWithWarnings type rather than Validation.

OK, but what about validation code? We created similar helper methods for wrapping validation into ValidationWithWarnings and wrapping values directly into warnings.

One could inline warning in for loop:

Or use it in validation method:

And of course chain it in for-loop:

Applicative

We support scalaz.Applicative, so it’s possible to take few validations and apply them to function if all elements are successes, collecting any errors and warnings if present.

Summing

Similarly to scalaz.Validation, we also support summing values, if value type has Semigroup typeclass:

Repository

Code with examples in test files can be found at https://github.com/Ajk4/ValidationWithWarnings

Q&A

Why not use Writer Monad?
– Same reason why we prefer Validation over Either with left/right projection. It’s more direct and descriptive.

Why validation nel underhood?
– It suited our business needs best.

Validation is not a Monad!
– True. 

You May Also Like

After WHUG meeting

Here are the slides from the talk a gave yesterday. If you have any questions, please ask. Here are the slides from the talk a gave yesterday. If you have any questions, please ask.

How to automate tests with Groovy 2.0, Spock and Gradle

This is the launch of the 1st blog in my life, so cheers and have a nice reading!

y u no test?

Couple of years ago I wasn't a big fan of unit testing. It was obvious to me that well prepared unit tests are crucial though. I didn't known why exactly crucial yet then. I just felt they are important. My disliking to write automation tests was mostly related to the effort necessary to prepare them. Also a spaghetti code was easily spotted in test sources.

Some goodies at hand

Now I know! Test are crucial to get a better design and a confidence. Confidence to improve without a hesitation. Moreover, now I have the tool to make test automation easy as Sunday morning... I'm talking about the Spock Framework. If you got here probably already know what the Spock is, so I won't introduce it. Enough to say that Spock is an awesome unit testing tool which, thanks to Groovy AST Transformation, simplifies creation of tests greatly.

An obstacle

The point is, since a new major version of Groovy has been released (2.0), there is no matching version of Spock available yet.

What now?

Well, in a matter of fact there is such a version. It's still under development though. It can be obtained from this Maven repository. We can of course use the Maven to build a project and run tests. But why not to go even more "groovy" way? XML is not for humans, is it? Lets use Gradle.

The build file

Update: at the end of the post is updated version of the build file.
apply plugin: 'groovy'
apply plugin: 'idea'

def langLevel = 1.7

sourceCompatibility = langLevel
targetCompatibility = langLevel

group = 'com.tamashumi.example.testwithspock'
version = '0.1'

repositories {
mavenLocal()
mavenCentral()
maven { url 'http://oss.sonatype.org/content/repositories/snapshots/' }
}

dependencies {
groovy 'org.codehaus.groovy:groovy-all:2.0.1'
testCompile 'org.spockframework:spock-core:0.7-groovy-2.0-SNAPSHOT'
}

idea {
project {
jdkName = langLevel
languageLevel = langLevel
}
}
As you can see the build.gradle file is almost self-explanatory. Groovy plugin is applied to compile groovy code. It needs groovy-all.jar - declared in version 2.0 at dependencies block just next to Spock in version 0.7. What's most important, mentioned Maven repository URL is added at repositories block.

Project structure and execution

Gradle's default project directory structure is similar to Maven's one. Unfortunately there is no 'create project' task and you have to create it by hand. It's not a big obstacle though. The structure you will create will more or less look as follows:
<project root>

├── build.gradle
└── src
├── main
│ ├── groovy
└── test
└── groovy
To build a project now you can type command gradle build or gradle test to only run tests.

How about Java?

You can test native Java code with Spock. Just add src/main/java directory and a following line to the build.gradle:
apply plugin: 'java'
This way if you don't want or just can't deploy Groovy compiled stuff into your production JVM for any reason, still whole goodness of testing with Spock and Groovy is at your hand.

A silly-simple example

Just to show that it works, here you go with a basic example.

Java simple example class:

public class SimpleJavaClass {

public int sumAll(int... args) {

int sum = 0;

for (int arg : args){
sum += arg;
}

return sum;
}
}

Groovy simple example class:

class SimpleGroovyClass {

String concatenateAll(char separator, String... args) {

args.join(separator as String)
}
}

The test, uhm... I mean the Specification:

class JustASpecification extends Specification {

@Unroll('Sums integers #integers into: #expectedResult')
def "Can sum different amount of integers"() {

given:
def instance = new SimpleJavaClass()

when:
def result = instance.sumAll(* integers)

then:
result == expectedResult

where:
expectedResult | integers
11 | [3, 3, 5]
8 | [3, 5]
254 | [2, 4, 8, 16, 32, 64, 128]
22 | [7, 5, 6, 2, 2]
}

@Unroll('Concatenates strings #strings with separator "#separator" into: #expectedResult')
def "Can concatenate different amount of integers with a specified separator"() {

given:
def instance = new SimpleGroovyClass()

when:
def result = instance.concatenateAll(separator, * strings)

then:
result == expectedResult

where:
expectedResult | separator | strings
'Whasup dude?' | ' ' as char | ['Whasup', 'dude?']
'2012/09/15' | '/' as char | ['2012', '09', '15']
'nice-to-meet-you' | '-' as char | ['nice', 'to', 'meet', 'you']
}
}
To run tests with Gradle simply execute command gradle test. Test reports can be found at <project root>/build/reports/tests/index.html and look kind a like this.


Please note that, thanks to @Unroll annotation, test is executed once per each parameters row in the 'table' at specification's where: block. This isn't a Java label, but a AST transformation magic.

IDE integration

Gradle's plugin for Iintellij Idea

I've added also Intellij Idea plugin for IDE project generation and some configuration for it (IDE's JDK name). To generate Idea's project files just run command: gradle idea There are available Eclipse and Netbeans plugins too, however I haven't tested them. Idea's one works well.

Intellij Idea's plugins for Gradle

Idea itself has a light Gradle support built-in on its own. To not get confused: Gradle has plugin for Idea and Idea has plugin for Gradle. To get even more 'pluginated', there is also JetGradle plugin within Idea. However I haven't found good reason for it's existence - well, maybe excluding one. It shows dependency tree. There is a bug though - JetGradle work's fine only for lang level 1.6. Strangely all the plugins together do not conflict each other. They even give complementary, quite useful tool set.

Running tests under IDE

Jest to add something sweet this is how Specification looks when run with jUnit  runner under Intellij Idea (right mouse button on JustASpecification class or whole folder of specification extending classes and select "Run ...". You'll see a nice view like this.

Building web application

If you need to build Java web application and bundle it as war archive just add plugin by typing the line
apply plugin: 'war'
in the build.gradle file and create a directory src/main/webapp.

Want to know more?

If you haven't heard about Spock or Gradle before or just curious, check the following links:

What next?

The last thing left is to write the real production code you are about to test. No matter will it be Groovy or Java, I leave this to your need and invention. Of course, you are welcome to post a comments here. I'll answer or even write some more posts about the subject.

Important update

Spock version 0.7 has been released, so the above build file doesn't work anymore. It's easy to fix it though. Just remove last dash and a word SNAPSHOT from Spock dependency declaration. Other important thing is that now spock-core depends on groovy-all-2.0.5, so to avoid dependency conflict groovy dependency should be changed from version 2.0.1 to 2.0.5.
Besides oss.sonata.org snapshots maven repository can be removed. No obstacles any more and the build file now looks as follows:
apply plugin: 'groovy'
apply plugin: 'idea'

def langLevel = 1.7

sourceCompatibility = langLevel
targetCompatibility = langLevel

group = 'com.tamashumi.example.testwithspock'
version = '0.1'

repositories {
mavenLocal()
mavenCentral()
}

dependencies {
groovy 'org.codehaus.groovy:groovy-all:2.0.5'
testCompile 'org.spockframework:spock-core:0.7-groovy-2.0'
}

idea {
project {
jdkName = langLevel
languageLevel = langLevel
}
}

Super Confitura Man

How Super Confitura Man came to be :)

Recently at TouK we had a one-day hackathon. There was no main theme for it, you just could post a project idea, gather people around it and hack on that idea for a whole day - drinks and pizza included.

My main idea was to create something that could be fun to build and be useful somehow to others. I’d figured out that since Confitura was just around a corner I could make a game, that would be playable at TouK’s booth at the conference venue. This idea seemed good enough to attract Rafał Nowak @RNowak3 and Marcin Jasion @marcinjasion - two TouK employees, that with me formed a team for the hackathon.

Confitura 01

The initial plan was to develop a simple mario-style game, with preceduraly generated levels, random collectible items and enemies. One of the ideas was to introduce Confitura Man as the main character, but due to time constraints, this fall through. We’ve decided to just choose a random available sprite for a character - hence the onion man :)

Confitura 02

How the game is played?

Since we wanted to have a scoreboard and have unique users, we’ve printed out QR codes. A person that would like to play the game could pick up a QR code, show it against a camera attached to the play booth. The start page scanned the QR code and launched the game with username read from paper code.

The rest of the game was playable with gamepad or keyboard.

Confitura game screen

Technicalities

Writing a game takes a lot of time and effort. We wanted to deliver, so we’ve decided to spend some time in the days before the hackathon just to bootstrap the technology stack of our enterprise.

We’ve decided that the game would be written in some Javascript based engine, with Google Chrome as a web platform. There are a lot of HTML5 game engines - list of html5 game engines and you could easily create a game with each and every of them. We’ve decided to use Phaser IO which handles a lot of difficult, game-related stuff on its own. So, we didn’t have to worry about physics, loading and storing assets, animations, object collisions, controls input/output. Go see for yourself, it is really nice and easy to use.

Scoreboard would be a rip-off from JIRA Survivor with stats being served from some web server app. To make things harder, the backend server was written in Clojure. With no experience in that language in the team, it was a bit risky, but the tasks of the server were trivial, so if all that clojure effort failed, it could be rewritten in something we know.

Statistics

During the whole Confitura day there were 69 unique players (69 QR codes were used), and 1237 games were played. The final score looked like this:

  1. Barister Lingerie 158 - 1450 points
  2. Boilerdang Custardbath 386 - 1060 points
  3. Benadryl Clarytin 306 - 870 points

And the obligatory scoreboard screenshot:

Confitura 03

Obstacles

The game, being created in just one day, had to have problems :) It wasn’t play tested enough, there were some rough edges. During the day we had to make a few fixes:

  • the server did not respect the highest score by specific user, it was just overwritting a user’s score with it’s latest one,
  • there was one feature not supported on keyboard, that was available on gamepad - turbo button
  • server was opening a database connection each time it got a request, so after around 5 minutes it would exhaust open file limit for MongoDB (backend database), this was easily fixed - thou the fix is a bit hackish :)

These were easily identified and fixed. Unfortunately there were issues that we were unable to fix while the event was on:

  • google chrome kept asking for the permission to use webcam - this was very annoying, and all the info found on the web did not work - StackOverflow thread
  • it was hard to start the game with QR code - either the codes were too small, or the lighting around that area was inappropriate - I think this issue could be fixed by printing larger codes,

Technology evaluation

All in all we were pretty happy with the chosen stack. Phaser was easy to use and left us with just the fun parts of the game creation process. Finding the right graphics with appropriate licensing was rather hard. We didn’t have enough time to polish all the visual aspects of the game before Confitura.

Writing a server in clojure was the most challenging part, with all the new syntax and new libraries. There were tasks, trivial in java/scala, but hard in Clojure - at least for a whimpy beginners :) Nevertheless Clojure seems like a really handy tool and I’d like to dive deeper into its ecosystem.

Source code

All of the sources for the game can be found here TouK/confitura-man.

The repository is split into two parts:

  • game - HTML5 game
  • server - clojure based backend server

To run the server you need to have a local MongoDB installation. Than in server’s directory run: $ lein ring server-headless This will start a server on http://localhost:3000

To run the game you need to install dependencies with bower and than run $ grunt from game’s directory.

To launch the QR reading part of the game, you enter http://localhost:9000/start.html. After scanning the code you’ll be redirected to http://localhost:9000/index.html - and the game starts.

Conclusion

Summing up, it was a great experience creating the game. It was fun to watch people playing the game. And even with all those glitches and stupid graphics, there were people vigorously playing it, which was awesome.

Thanks to Rafał and Michał for great coding experience, and thanks to all the players of our stupid little game. If you’d like to ask me about anything - feel free to contact me by mail or twitter @zygm0nt

Recently at TouK we had a one-day hackathon. There was no main theme for it, you just could post a project idea, gather people around it and hack on that idea for a whole day - drinks and pizza included.

My main idea was to create something that could be fun to build and be useful somehow to others. I’d figured out that since Confitura was just around a corner I could make a game, that would be playable at TouK’s booth at the conference venue. This idea seemed good enough to attract >Conclusion