Multi phased processing in scala

Last time in our project we had to add progress bar for visualization of long time running process. Process was made of a few phases and we had to print in which phase we currently are. In first step we conclude that we need to create a class of Progre…

Last time in our project we had to add progress bar for visualization of long time running process. Process was made of a few phases and we had to print in which phase we currently are. In first step we conclude that we need to create a class of Progress which will be passed as an implicit parameter to our service. Then we will wrap method calls be inProgress method which will notify some e.g. akka actor about phase begin and phase end.

But this approach has some disadvantages. Firstly before we start service’s operation we need to init progress with count of all phases to get know ratio of progress finish. With this approach we had to add some extra counting before operation start.

If we want to keep real progress notifications the numbers of phases had to fit count of inPhase blocks. Some of phases were dynamically computed and some where omitted in case of failure validations results. This code become to be unmaintained.

We found that we need to join computation of phases with real phase processing. In this case we need to change approach from building process to building chain of phases that will run the process. Each phase will take the result of previous phase and transform it to new output. So example process will look like this:

Code giving this chain functionality looks like this:

We’ve used right associative operator :: for building chain of phases. “Body” of phases is piped by andThen: processPrevWrapped andThen processNext. For nil-tail we need to have a factory creating empty chain with identity “body” function.

Also if we have this kind of tool, we can modify piping code according to nature of our flow. For example if we are using scalaz.Validation we can do validating chain which will extract a success from n-step output and pass it to input of next step (like flatMap). In the other hand if n-step will return Failure, we will skip all remaining phases of validating chain.

To make building of chain more production-ready we add some extra features:

  • Chaining of chains (sth like ::: in scala Lists)
  • Transforming of input/output – for adding some “glue” code for simpler phases chaining
  • Wrapping of chains – also some “glue” code doing both input and output transformations
  • Sequencing of chains – sequenced processing of multiple phases with the same input

If you are interested in using similar approach, take a look at my github project: scala-phases-chain. If you want to integrate this tool with akka actors, simply change MultiPhasedProgress.notifyAboutStatus method to look like this:

You May Also Like

Thought static method can’t be easy to mock, stub nor track? Wrong!

No matter why, no matter is it a good idea. Sometimes one just wants to check or it's necessary to be done. Mock a static method, woot? Impossibru!

In pure Java world it is still a struggle. But Groovy allows you to do that really simple. Well, not groovy alone, but with a great support of Spock.

Lets move on straight to the example. To catch some context we have an abstract for the example needs. A marketing project with a set of offers. One to many.

import spock.lang.Specification

class OfferFacadeSpec extends Specification {

    OfferFacade facade = new OfferFacade()

    def setup() {
        GroovyMock(Project, global: true)
    }

    def 'delegates an add offer call to the domain with proper params'() {
        given:
            Map params = [projId: projectId, name: offerName]

        when:
            Offer returnedOffer = facade.add(params)

        then:
            1 * Project.addOffer(projectId, _) >> { projId, offer -> offer }
            returnedOffer.name == params.name

        where:
            projectId | offerName
            1         | 'an Offer'
            15        | 'whasup!?'
            123       | 'doskonała oferta - kup teraz!'
    }
}
So we test a facade responsible for handling "add offer to the project" call triggered  somewhere in a GUI.
We want to ensure that static method Project.addOffer(long, Offer) will receive correct params when java.util.Map with user form input comes to the facade.add(params).
This is unit test, so how Project.addOffer() works is out of scope. Thus we want to stub it.

The most important is a GroovyMock(Project, global: true) statement.
What it does is modifing Project class to behave like a Spock's mock. 
GroovyMock() itself is a method inherited from SpecificationThe global flag is necessary to enable mocking static methods.
However when one comes to the need of mocking static method, author of Spock Framework advice to consider redesigning of implementation. It's not a bad advice, I must say.

Another important thing are assertions at then: block. First one checks an interaction, if the Project.addOffer() method was called exactly once, with a 1st argument equal to the projectId and some other param (we don't have an object instance yet to assert anything about it).
Right shit operator leads us to the stub which replaces original method implementation by such statement.
As a good stub it does nothing. The original method definition has return type Offer. The stub needs to do the same. So an offer passed as the 2nd argument is just returned.
Thanks to this we can assert about name property if it's equal with the value from params. If no return was designed the name could be checked inside the stub Closure, prefixed with an assert keyword.

Worth of  mentioning is that if you want to track interactions of original static method implementation without replacing it, then you should try using GroovySpy instead of GroovyMock.

Unfortunately static methods declared at Java object can't be treated in such ways. Though regular mocks and whole goodness of Spock can be used to test pure Java code, which is awesome anyway :)No matter why, no matter is it a good idea. Sometimes one just wants to check or it's necessary to be done. Mock a static method, woot? Impossibru!

In pure Java world it is still a struggle. But Groovy allows you to do that really simple. Well, not groovy alone, but with a great support of Spock.

Lets move on straight to the example. To catch some context we have an abstract for the example needs. A marketing project with a set of offers. One to many.

import spock.lang.Specification

class OfferFacadeSpec extends Specification {

    OfferFacade facade = new OfferFacade()

    def setup() {
        GroovyMock(Project, global: true)
    }

    def 'delegates an add offer call to the domain with proper params'() {
        given:
            Map params = [projId: projectId, name: offerName]

        when:
            Offer returnedOffer = facade.add(params)

        then:
            1 * Project.addOffer(projectId, _) >> { projId, offer -> offer }
            returnedOffer.name == params.name

        where:
            projectId | offerName
            1         | 'an Offer'
            15        | 'whasup!?'
            123       | 'doskonała oferta - kup teraz!'
    }
}
So we test a facade responsible for handling "add offer to the project" call triggered  somewhere in a GUI.
We want to ensure that static method Project.addOffer(long, Offer) will receive correct params when java.util.Map with user form input comes to the facade.add(params).
This is unit test, so how Project.addOffer() works is out of scope. Thus we want to stub it.

The most important is a GroovyMock(Project, global: true) statement.
What it does is modifing Project class to behave like a Spock's mock. 
GroovyMock() itself is a method inherited from SpecificationThe global flag is necessary to enable mocking static methods.
However when one comes to the need of mocking static method, author of Spock Framework advice to consider redesigning of implementation. It's not a bad advice, I must say.

Another important thing are assertions at then: block. First one checks an interaction, if the Project.addOffer() method was called exactly once, with a 1st argument equal to the projectId and some other param (we don't have an object instance yet to assert anything about it).
Right shit operator leads us to the stub which replaces original method implementation by such statement.
As a good stub it does nothing. The original method definition has return type Offer. The stub needs to do the same. So an offer passed as the 2nd argument is just returned.
Thanks to this we can assert about name property if it's equal with the value from params. If no return was designed the name could be checked inside the stub Closure, prefixed with an assert keyword.

Worth of  mentioning is that if you want to track interactions of original static method implementation without replacing it, then you should try using GroovySpy instead of GroovyMock.

Unfortunately static methods declared at Java object can't be treated in such ways. Though regular mocks and whole goodness of Spock can be used to test pure Java code, which is awesome anyway :)