You May Also Like

Thought static method can’t be easy to mock, stub nor track? Wrong!

No matter why, no matter is it a good idea. Sometimes one just wants to check or it's necessary to be done. Mock a static method, woot? Impossibru!

In pure Java world it is still a struggle. But Groovy allows you to do that really simple. Well, not groovy alone, but with a great support of Spock.

Lets move on straight to the example. To catch some context we have an abstract for the example needs. A marketing project with a set of offers. One to many.

import spock.lang.Specification

class OfferFacadeSpec extends Specification {

    OfferFacade facade = new OfferFacade()

    def setup() {
        GroovyMock(Project, global: true)
    }

    def 'delegates an add offer call to the domain with proper params'() {
        given:
            Map params = [projId: projectId, name: offerName]

        when:
            Offer returnedOffer = facade.add(params)

        then:
            1 * Project.addOffer(projectId, _) >> { projId, offer -> offer }
            returnedOffer.name == params.name

        where:
            projectId | offerName
            1         | 'an Offer'
            15        | 'whasup!?'
            123       | 'doskonała oferta - kup teraz!'
    }
}
So we test a facade responsible for handling "add offer to the project" call triggered  somewhere in a GUI.
We want to ensure that static method Project.addOffer(long, Offer) will receive correct params when java.util.Map with user form input comes to the facade.add(params).
This is unit test, so how Project.addOffer() works is out of scope. Thus we want to stub it.

The most important is a GroovyMock(Project, global: true) statement.
What it does is modifing Project class to behave like a Spock's mock. 
GroovyMock() itself is a method inherited from SpecificationThe global flag is necessary to enable mocking static methods.
However when one comes to the need of mocking static method, author of Spock Framework advice to consider redesigning of implementation. It's not a bad advice, I must say.

Another important thing are assertions at then: block. First one checks an interaction, if the Project.addOffer() method was called exactly once, with a 1st argument equal to the projectId and some other param (we don't have an object instance yet to assert anything about it).
Right shit operator leads us to the stub which replaces original method implementation by such statement.
As a good stub it does nothing. The original method definition has return type Offer. The stub needs to do the same. So an offer passed as the 2nd argument is just returned.
Thanks to this we can assert about name property if it's equal with the value from params. If no return was designed the name could be checked inside the stub Closure, prefixed with an assert keyword.

Worth of  mentioning is that if you want to track interactions of original static method implementation without replacing it, then you should try using GroovySpy instead of GroovyMock.

Unfortunately static methods declared at Java object can't be treated in such ways. Though regular mocks and whole goodness of Spock can be used to test pure Java code, which is awesome anyway :)No matter why, no matter is it a good idea. Sometimes one just wants to check or it's necessary to be done. Mock a static method, woot? Impossibru!

In pure Java world it is still a struggle. But Groovy allows you to do that really simple. Well, not groovy alone, but with a great support of Spock.

Lets move on straight to the example. To catch some context we have an abstract for the example needs. A marketing project with a set of offers. One to many.

import spock.lang.Specification

class OfferFacadeSpec extends Specification {

    OfferFacade facade = new OfferFacade()

    def setup() {
        GroovyMock(Project, global: true)
    }

    def 'delegates an add offer call to the domain with proper params'() {
        given:
            Map params = [projId: projectId, name: offerName]

        when:
            Offer returnedOffer = facade.add(params)

        then:
            1 * Project.addOffer(projectId, _) >> { projId, offer -> offer }
            returnedOffer.name == params.name

        where:
            projectId | offerName
            1         | 'an Offer'
            15        | 'whasup!?'
            123       | 'doskonała oferta - kup teraz!'
    }
}
So we test a facade responsible for handling "add offer to the project" call triggered  somewhere in a GUI.
We want to ensure that static method Project.addOffer(long, Offer) will receive correct params when java.util.Map with user form input comes to the facade.add(params).
This is unit test, so how Project.addOffer() works is out of scope. Thus we want to stub it.

The most important is a GroovyMock(Project, global: true) statement.
What it does is modifing Project class to behave like a Spock's mock. 
GroovyMock() itself is a method inherited from SpecificationThe global flag is necessary to enable mocking static methods.
However when one comes to the need of mocking static method, author of Spock Framework advice to consider redesigning of implementation. It's not a bad advice, I must say.

Another important thing are assertions at then: block. First one checks an interaction, if the Project.addOffer() method was called exactly once, with a 1st argument equal to the projectId and some other param (we don't have an object instance yet to assert anything about it).
Right shit operator leads us to the stub which replaces original method implementation by such statement.
As a good stub it does nothing. The original method definition has return type Offer. The stub needs to do the same. So an offer passed as the 2nd argument is just returned.
Thanks to this we can assert about name property if it's equal with the value from params. If no return was designed the name could be checked inside the stub Closure, prefixed with an assert keyword.

Worth of  mentioning is that if you want to track interactions of original static method implementation without replacing it, then you should try using GroovySpy instead of GroovyMock.

Unfortunately static methods declared at Java object can't be treated in such ways. Though regular mocks and whole goodness of Spock can be used to test pure Java code, which is awesome anyway :)

Spock, Java and Maven

Few months ago I've came across Groovy - powerful language for JVM platform which combines the power of Java with abilities typical for scripting languages (dynamic typing, metaprogramming).

Together with Groovy I've discovered spock framework (https://code.google.com/p/spock/) - specification framework for Groovy (of course you can test Java classes too!). But spock is not only test/specification framework - it also contains powerful mocking tools.

Even though spock is dedicated for Groovy there is no problem with using it for Java classes tests. In this post I'm going to describe how to configure Maven project to build and run spock specifications together with traditional JUnit tests.


Firstly, we need to prepare pom.xml and add necessary dependencies and plugins.

Two obligatory libraries are:
<dependency>
<groupid>org.spockframework</groupId>
<artifactid>spock-core</artifactId>
<version>0.7-groovy-2.0</version>
<scope>test</scope>
</dependency>
<dependency>
<groupid>org.codehaus.groovy</groupId>
<artifactid>groovy-all</artifactId>
<version>${groovy.version}</version>
<scope>test</scope>
</dependency>
Where groovy.version is property defined in pom.xml for more convenient use and easy version change, just like this:
<properties>
<gmaven-plugin.version>1.4</gmaven-plugin.version>
<groovy.version>2.1.5</groovy.version>
</properties>

I've added property for gmaven-plugin version for the same reason ;)

Besides these two dependencies, we can use few additional ones providing extra functionality:
  • cglib - for class mocking
  • objenesis - enables mocking classes without default constructor
To add them to the project put these lines in <dependencies> section of pom.xml:
<dependency>
<groupid>cglib</groupId>
<artifactid>cglib-nodep</artifactId>
<version>3.0</version>
<scope>test</scope>
</dependency>
<dependency>
<groupid>org.objenesis</groupId>
<artifactid>objenesis</artifactId>
<version>1.3</version>
<scope>test</scope>
</dependency>

And that's all for dependencies section. Now we will focus on plugins necessary to compile Groovy classes. We need to add gmaven-plugin with gmaven-runtime-2.0 dependency in plugins section:
<plugin>
<groupid>org.codehaus.gmaven</groupId>
<artifactid>gmaven-plugin</artifactId>
<version>${gmaven-plugin.version}</version>
<configuration>
<providerselection>2.0</providerSelection>
</configuration>
<executions>
<execution>
<goals>
<goal>compile</goal>
<goal>testCompile</goal>
</goals>
</execution>
</executions>
<dependencies>
<dependency>
<groupid>org.codehaus.gmaven.runtime</groupId>
<artifactid>gmaven-runtime-2.0</artifactId>
<version>${gmaven-plugin.version}</version>
<exclusions>
<exclusion>
<groupid>org.codehaus.groovy</groupId>
<artifactid>groovy-all</artifactId>
</exclusion>
</exclusions>
</dependency>
<dependency>
<groupid>org.codehaus.groovy</groupId>
<artifactid>groovy-all</artifactId>
<version>${groovy.version}</version>
</dependency>
</dependencies>
</plugin>

With these configuration we can use spock and write our first specifications. But there is one issue: default settings for maven-surefire plugin demand that test classes must end with "..Test" postfix, which is ok when we want to use such naming scheme for our spock tests. But if we want to name them like CommentSpec.groovy or whatever with "..Spec" ending (what in my opinion is much more readable) we need to make little change in surefire plugin configuration:
<plugin>
<groupid>org.apache.maven.plugins</groupId>
<artifactid>maven-surefire-plugin</artifactId>
<version>2.15</version>
<configuration>
<includes>
<include>**/*Test.java</include>
<include>**/*Spec.java</include>
</includes>
</configuration>
</plugin>

As you can see there is a little trick ;) We add include directive for standard Java JUnit test ending with "..Test" postfix, but there is also an entry for spock test ending with "..Spec". And there is a trick: we must write "**/*Spec.java", not "**/*Spec.groovy", otherwise Maven will not run spock tests (which is strange and I've spent some time to figure out why Maven can't run my specs).

Little update: instead of "*.java" postfix for both types of tests we can write "*.class" what is in my opinion more readable and clean:
<include>**/*Test.class</include>
<include>**/*Spec.class</include>
(thanks to Tomek Pęksa for pointing this out!)

With such configuration, we can write either traditional JUnit test and put them in src/test/java directory or groovy spock specifications and place them in src/test/groovy. And both will work together just fine :) In one of my next posts I'll write something about using spock and its mocking abilities in practice, so stay in tune.