Vert.x on Raspberry Pi

Lightweight JVM web server

Some people say that using Java on Raspberry Pi is a stupid idea. Sure, JVM uses a lot of system resources but when you can watch HD movies on RPi why don’t run a tiny Java app? But I do mean really tiny – no Tomcat nor any other application server involved, no war and deployment stuff. That’s why I came out with idea of using vert.x – a relatively new framework for writing modern web application. In this post I’ll try to show lessons learned after developing a sample app using vert.x and then running it on the Raspberry Pi.

Working with vert.x on RPi

Vert.x is node.js on steroids for JVM. In addition to all the libs for the JVM it offers you a lot more:

  • polyglot – write your application in any language that runs on the JVM (or mix a few)
  • really simple programming model
  • inter-app communication via event bus and shared data
  • ease of scalability and concurrency handling

If you want a gentle start in the world of vert.x I definitely suggest you reading the manual on project website.

Installation

First of all – install Java 8 early access build for ARM from Oracle website. Vert.x indeed requires Java 7, but the 8 build has a real hard float support.

The easiest way to manage vert.x installation is to use GVM:

curl -s get.gvmtool.net | bash
gvm install vertx

Now you should be able to run vertx from the command line.

Development process

In my approach I’m developing the app on my laptop and want to have straight path of running the code on RPI. Since I love the Intellij Idea 12 I put my sources into common maven/gradle structure and use Verticle interface to get full benefits of my IDE: code completion, refactoring and testing support. I use Groovy as a language for my verticles but I want the sources to be compiled on my laptop instead of RPI which a bit improves startup time of the app.

The examples for vert.x distribution are not reaaly development-friendly but I’ve found great example of Groovy starter project on GitHub which introduces two huge ideas: separating configuration of the app in single JSON file and a runVertx gradle task to build and run the app in a single step. I also use the web-server vert.x module to serve static web files of the app frontend. So I have SockJS and REST verticles in the backend and JavaScript frontend in a single project root.

Here is the final layout explained:

src/main/groovy - verticles code
    App.groovy - app lancher
src/main/test - verticles tests
web - frontend stuff
build.gradle - gradle script with runVertx task
run.sh - script for running app on RPI (no compilation)

And a typical development process looks like this:

  • write verticles code (*)
  • write unit tests for verticles (*)
  • run the app on laptop and modify the frontend
  • copy binaries to RPi and run the app from command line

(*) change the order of these two for TDD ;)

The only thing I’m only struggling from is lack of runtime reloading of verticles. Maybe using JRebel could help there but I ain’t got the licence (yet).

You can see my example project here.

Benchmark

I also did some benchmarking of vert.x app on RPI throughput. Sure, you cannot expect that single RPI could handle a lot of transactions per sec, so the test was just for fun. In the test I served a static CSS (bootstrap) and invoked a really simple REST resource (example details/Joe/123 mapping from RouteMatcher). I used siege with 2 and 200 consumers and compared the results between the very.x (1 instance), node.js express and nginx (just for static CSS). I installed node.js 0.8.18 from binaries found here.

  • It is nice that serving static files is quite as fast as in the nginx. There is a benchmark showing that Monkey web server is a bit faster, but in my environment I wasn’t able to achieve more than 45 req/sec on nginx, so ~40 req/sec on vert.x is really good result.
  • Vert.x seems to be about 2-2.5 times faster than node.js with express. This is similar to Tim Fox’ benchmark with both node.js and vert.x in single instance. (BTW: I have no idea how to get 30k req/sec on a workstation as in Tim’s test).
  • The benchmark shows that RPi is indeed a toy PC – on my workstation it’s really easy to achieve thousands of requests per second. So forget about handling hundreds of requests per seconds on a single RPi instance.

(a bit) Speeding up startup time

The thing that really puts node.js in front is the startup time. Java is slow at both JVM startup and while classloading. My first application deployed on RPi took about 30 sec to start, while on my laptop it was about 2-3 seconds. It is possible to cut it down to 18 seconds, here are a few hints:

  • don’t compile sources directly on RPi – build a jar on your workstation. In my setup I run the server from gradle on my laptop but also have a bash script to run it on raspberry which passes vert.x a -cp parameter pointing to builded jar.
  • don’t run a SockJS server when not needed. It tooks about 5 sec to start. You can disable it by setting bridge to false in mod-web configuration.
  • you can write your own mod-web in just a few lines of code. You will save some milliseconds but also this setup allows you to pass custom RESTful routes to RouteMatcher. Look at this example:
def rm = new RouteMatcher()
rm.get('/details/:user/:id', { HttpServerRequest req ->
    req.response.end "User: ${req.params()['user']} ID: ${req.params()['id']}"
} as Handler<HttpServerRequest>)

// Catch / - serve the index page
rm.get('/', { HttpServerRequest req ->
    req.response.sendFile("web/index.html")
} as Handler<HttpServerRequest>)

// Catch all - just send the file from web directory
rm.getWithRegEx('.*', { HttpServerRequest req ->
    req.response.sendFile "web/${req.path}"
} as Handler<HttpServerRequest>)    

To debug the most time consuming steps on app startup, you should configure log4j logging. Vert.x outputs some info about deploying verticles, you can also put your own logging messages. Just copy log4j.jar to vert.x lib directory and add

-Dorg.vertx.logger-delegate-factory-class-name=org.vertx.java.core.logging.impl.Log4jLogDelegateFactory

parameter in vert.x startup script.

Sample project

You can check these concepts by cloning a top monitor GitHub project. It is a Dashing-inspired web app showing results from calling a top command by lucid JQuery knobs.
Every 2 seconds stats from the top call are pushed through eventBus (and internally by SockJS) to frontend.

The project itself it not smashing, you can just check the structure and the tests when I’m mocking ARM-specific top command results. Enjoy!

You May Also Like

How to automate tests with Groovy 2.0, Spock and Gradle

This is the launch of the 1st blog in my life, so cheers and have a nice reading!

y u no test?

Couple of years ago I wasn't a big fan of unit testing. It was obvious to me that well prepared unit tests are crucial though. I didn't known why exactly crucial yet then. I just felt they are important. My disliking to write automation tests was mostly related to the effort necessary to prepare them. Also a spaghetti code was easily spotted in test sources.

Some goodies at hand

Now I know! Test are crucial to get a better design and a confidence. Confidence to improve without a hesitation. Moreover, now I have the tool to make test automation easy as Sunday morning... I'm talking about the Spock Framework. If you got here probably already know what the Spock is, so I won't introduce it. Enough to say that Spock is an awesome unit testing tool which, thanks to Groovy AST Transformation, simplifies creation of tests greatly.

An obstacle

The point is, since a new major version of Groovy has been released (2.0), there is no matching version of Spock available yet.

What now?

Well, in a matter of fact there is such a version. It's still under development though. It can be obtained from this Maven repository. We can of course use the Maven to build a project and run tests. But why not to go even more "groovy" way? XML is not for humans, is it? Lets use Gradle.

The build file

Update: at the end of the post is updated version of the build file.
apply plugin: 'groovy'
apply plugin: 'idea'

def langLevel = 1.7

sourceCompatibility = langLevel
targetCompatibility = langLevel

group = 'com.tamashumi.example.testwithspock'
version = '0.1'

repositories {
mavenLocal()
mavenCentral()
maven { url 'http://oss.sonatype.org/content/repositories/snapshots/' }
}

dependencies {
groovy 'org.codehaus.groovy:groovy-all:2.0.1'
testCompile 'org.spockframework:spock-core:0.7-groovy-2.0-SNAPSHOT'
}

idea {
project {
jdkName = langLevel
languageLevel = langLevel
}
}
As you can see the build.gradle file is almost self-explanatory. Groovy plugin is applied to compile groovy code. It needs groovy-all.jar - declared in version 2.0 at dependencies block just next to Spock in version 0.7. What's most important, mentioned Maven repository URL is added at repositories block.

Project structure and execution

Gradle's default project directory structure is similar to Maven's one. Unfortunately there is no 'create project' task and you have to create it by hand. It's not a big obstacle though. The structure you will create will more or less look as follows:
<project root>

├── build.gradle
└── src
├── main
│ ├── groovy
└── test
└── groovy
To build a project now you can type command gradle build or gradle test to only run tests.

How about Java?

You can test native Java code with Spock. Just add src/main/java directory and a following line to the build.gradle:
apply plugin: 'java'
This way if you don't want or just can't deploy Groovy compiled stuff into your production JVM for any reason, still whole goodness of testing with Spock and Groovy is at your hand.

A silly-simple example

Just to show that it works, here you go with a basic example.

Java simple example class:

public class SimpleJavaClass {

public int sumAll(int... args) {

int sum = 0;

for (int arg : args){
sum += arg;
}

return sum;
}
}

Groovy simple example class:

class SimpleGroovyClass {

String concatenateAll(char separator, String... args) {

args.join(separator as String)
}
}

The test, uhm... I mean the Specification:

class JustASpecification extends Specification {

@Unroll('Sums integers #integers into: #expectedResult')
def "Can sum different amount of integers"() {

given:
def instance = new SimpleJavaClass()

when:
def result = instance.sumAll(* integers)

then:
result == expectedResult

where:
expectedResult | integers
11 | [3, 3, 5]
8 | [3, 5]
254 | [2, 4, 8, 16, 32, 64, 128]
22 | [7, 5, 6, 2, 2]
}

@Unroll('Concatenates strings #strings with separator "#separator" into: #expectedResult')
def "Can concatenate different amount of integers with a specified separator"() {

given:
def instance = new SimpleGroovyClass()

when:
def result = instance.concatenateAll(separator, * strings)

then:
result == expectedResult

where:
expectedResult | separator | strings
'Whasup dude?' | ' ' as char | ['Whasup', 'dude?']
'2012/09/15' | '/' as char | ['2012', '09', '15']
'nice-to-meet-you' | '-' as char | ['nice', 'to', 'meet', 'you']
}
}
To run tests with Gradle simply execute command gradle test. Test reports can be found at <project root>/build/reports/tests/index.html and look kind a like this.


Please note that, thanks to @Unroll annotation, test is executed once per each parameters row in the 'table' at specification's where: block. This isn't a Java label, but a AST transformation magic.

IDE integration

Gradle's plugin for Iintellij Idea

I've added also Intellij Idea plugin for IDE project generation and some configuration for it (IDE's JDK name). To generate Idea's project files just run command: gradle idea There are available Eclipse and Netbeans plugins too, however I haven't tested them. Idea's one works well.

Intellij Idea's plugins for Gradle

Idea itself has a light Gradle support built-in on its own. To not get confused: Gradle has plugin for Idea and Idea has plugin for Gradle. To get even more 'pluginated', there is also JetGradle plugin within Idea. However I haven't found good reason for it's existence - well, maybe excluding one. It shows dependency tree. There is a bug though - JetGradle work's fine only for lang level 1.6. Strangely all the plugins together do not conflict each other. They even give complementary, quite useful tool set.

Running tests under IDE

Jest to add something sweet this is how Specification looks when run with jUnit  runner under Intellij Idea (right mouse button on JustASpecification class or whole folder of specification extending classes and select "Run ...". You'll see a nice view like this.

Building web application

If you need to build Java web application and bundle it as war archive just add plugin by typing the line
apply plugin: 'war'
in the build.gradle file and create a directory src/main/webapp.

Want to know more?

If you haven't heard about Spock or Gradle before or just curious, check the following links:

What next?

The last thing left is to write the real production code you are about to test. No matter will it be Groovy or Java, I leave this to your need and invention. Of course, you are welcome to post a comments here. I'll answer or even write some more posts about the subject.

Important update

Spock version 0.7 has been released, so the above build file doesn't work anymore. It's easy to fix it though. Just remove last dash and a word SNAPSHOT from Spock dependency declaration. Other important thing is that now spock-core depends on groovy-all-2.0.5, so to avoid dependency conflict groovy dependency should be changed from version 2.0.1 to 2.0.5.
Besides oss.sonata.org snapshots maven repository can be removed. No obstacles any more and the build file now looks as follows:
apply plugin: 'groovy'
apply plugin: 'idea'

def langLevel = 1.7

sourceCompatibility = langLevel
targetCompatibility = langLevel

group = 'com.tamashumi.example.testwithspock'
version = '0.1'

repositories {
mavenLocal()
mavenCentral()
}

dependencies {
groovy 'org.codehaus.groovy:groovy-all:2.0.5'
testCompile 'org.spockframework:spock-core:0.7-groovy-2.0'
}

idea {
project {
jdkName = langLevel
languageLevel = langLevel
}
}

Wicket form submit not safe for redirecting to intercept page

The problem When you have a form, that anybody can see, but only logged on users can POST, you may want to redirect the user to the login page, and back to the form after login Using wicket 1.3/1.4, if you do that using redirectToInterceptPage(loginP...The problem When you have a form, that anybody can see, but only logged on users can POST, you may want to redirect the user to the login page, and back to the form after login Using wicket 1.3/1.4, if you do that using redirectToInterceptPage(loginP...

Multi phased processing in scala

Last time in our project we had to add progress bar for visualization of long time running process. Process was made of a few phases and we had to print in which phase we currently are. In first step we conclude that we need to create a class of Progre...