Mój wykład na Warszawa JUG

We wtorek (29.10.2012) pokażę podstawy budowania Front Endu przy użyciu Twitter Bootstrap i jQuery. Zbudujemy razem aplikację do zarządzania biblioteką Warszawa JUG. Dlaczego warto przyjść? Bo będzie niedużo, ale powoli i ze zrozumieniem. Będzie to dobry fundament do dalszego rozwijania umiejętności związanych z budowanie FE.

Przeklejam zapowiedź z WJUG:

W najbliższą sobotę 100. spotkanie warszawskiego JUGa w postaci warsztatowej,
ale grupa nie zwalnia tempa i miło będzie nam gościć jednego z liderów grupy – Bartka Zdanowskiego!
Gorąco zapraszamy w najbliższy wtorek, 30 października o godzinie 18:00,
na Wydziale Matematyki Informatyki i Mechaniki UW (Banacha 2), w sali 5440 (IV piętro).
Temat: Budowanie frontendu przy użyciu TwitterBootstrap i jQuery – Bartek Zdanowski

Bartek o wykładzie:
Podczas wykładu zrobię mały wstęp do JavaScriptu (niezbędne minimum),
pokaże jak używać TwitterBootstrap[1], aby zbudować layout i jak to
ożywić przy użyciu jQuery[2]. W przypadku jQ zobaczymy też jak
komunikować się z backendem. Postaramy się razem zbudować długo
oczekiwaną aplikację do zarządzania biblioteką WJUG. Pokażę Wam rapid
development przy użyciu liveview, czy automatycznego odświeżania
przeglądarki w miarę powstawiania layoutu.
Backend zapewni nam Grails[3], którego nie będę pokazywał, chyba, że
starczy nam czasu i będą chętni.
Poziom wykładu: początkujący.

*Uwaga*: Jeśli pobijemy rekord frekwencji w październiku, to wśród
zebranych rozlosujemy licencję IntelliJ Idea lub dwie, jeśli przyjdzie
dostatecznie dużo ludzi! Na pewno do rozlosowania będzie roczna
licencja JRebel, bardzo dobrego narzędzia.

O Bartku:

Bartek Zdanowski na co dzień pracuje jako developer w TouK[4], jest
tatą dzieci, mężem żony oraz panem psa. Żonę wspiera w Fundacji
Artystycznej Młyn[5], która wystawia spektakle dla dorosłych, na które
bardzo serdecznie zaprasza ;-) Nie wypada nie mieć bloga, więc ma [6].
Od jakiegoś czasu jest współorganizatorem największej społecznościowej
konferencji Confitura[7], a ostatnio po godzinach jest szalonym
naukowcem[8].

Planowany czas prezentacji wraz z dyskusją to 120 min.

Informacje o spotkaniach zawsze widoczne w kalendarzu grupy oraz na Twitterze.

Zapraszamy!

PS. Yeah! Pobiłem rekord ilości linków w mojej zapowiedzi!
You May Also Like

Recently at storm-users

I've been reading through storm-users Google Group recently. This resolution was heavily inspired by Adam Kawa's post "Football zero, Apache Pig hero". Since I've encountered a lot of insightful and very interesting information I've decided to describe some of those in this post.

  • nimbus will work in HA mode - There's a pull request open for it already... but some recent work (distributing topology files via Bittorrent) will greatly simplify the implementation. Once the Bittorrent work is done we'll look at reworking the HA pull request. (storm’s pull request)

  • pig on storm - Pig on Trident would be a cool and welcome project. Join and groupBy have very clear semantics there, as those concepts exist directly in Trident. The extensions needed to Pig are the concept of incremental, persistent state across batches (mirroring those concepts in Trident). You can read a complete proposal.

  • implementing topologies in pure python with petrel looks like this:

class Bolt(storm.BasicBolt):
    def initialize(self, conf, context):
       ''' This method executed only once '''
        storm.log('initializing bolt')

    def process(self, tup):
       ''' This method executed every time a new tuple arrived '''       
       msg = tup.values[0]
       storm.log('Got tuple %s' %msg)

if __name__ == "__main__":
    Bolt().run()
  • Fliptop is happy with storm - see their presentation here

  • topology metrics in 0.9.0: The new metrics feature allows you to collect arbitrarily custom metrics over fixed windows. Those metrics are exported to a metrics stream that you can consume by implementing IMetricsConsumer and configure with Config.java#L473. Use TopologyContext#registerMetric to register new metrics.

  • storm vs flume - some users' point of view: I use Storm and Flume and find that they are better at different things - it really depends on your use case as to which one is better suited. First and foremost, they were originally designed to do different things: Flume is a reliable service for collecting, aggregating, and moving large amounts of data from source to destination (e.g. log data from many web servers to HDFS). Storm is more for real-time computation (e.g. streaming analytics) where you analyse data in flight and don't necessarily land it anywhere. Having said that, Storm is also fault-tolerant and can write to external data stores (e.g. HBase) and you can do real-time computation in Flume (using interceptors)

That's all for this day - however, I'll keep on reading through storm-users, so watch this space for more info on storm development.

I've been reading through storm-users Google Group recently. This resolution was heavily inspired by Adam Kawa's post "Football zero, Apache Pig hero". Since I've encountered a lot of insightful and very interesting information I've decided to describe some of those in this post.

  • nimbus will work in HA mode - There's a pull request open for it already... but some recent work (distributing topology files via Bittorrent) will greatly simplify the implementation. Once the Bittorrent work is done we'll look at reworking the HA pull request. (storm’s pull request)

  • pig on storm - Pig on Trident would be a cool and welcome project. Join and groupBy have very clear semantics there, as those concepts exist directly in Trident. The extensions needed to Pig are the concept of incremental, persistent state across batches (mirroring those concepts in Trident). You can read a complete proposal.

  • implementing topologies in pure python with petrel looks like this:

class Bolt(storm.BasicBolt):
    def initialize(self, conf, context):
       ''' This method executed only once '''
        storm.log('initializing bolt')

    def process(self, tup):
       ''' This method executed every time a new tuple arrived '''       
       msg = tup.values[0]
       storm.log('Got tuple %s' %msg)

if __name__ == "__main__":
    Bolt().run()
  • Fliptop is happy with storm - see their presentation here

  • topology metrics in 0.9.0: The new metrics feature allows you to collect arbitrarily custom metrics over fixed windows. Those metrics are exported to a metrics stream that you can consume by implementing IMetricsConsumer and configure with Config.java#L473. Use TopologyContext#registerMetric to register new metrics.

  • storm vs flume - some users' point of view: I use Storm and Flume and find that they are better at different things - it really depends on your use case as to which one is better suited. First and foremost, they were originally designed to do different things: Flume is a reliable service for collecting, aggregating, and moving large amounts of data from source to destination (e.g. log data from many web servers to HDFS). Storm is more for real-time computation (e.g. streaming analytics) where you analyse data in flight and don't necessarily land it anywhere. Having said that, Storm is also fault-tolerant and can write to external data stores (e.g. HBase) and you can do real-time computation in Flume (using interceptors)

That's all for this day - however, I'll keep on reading through storm-users, so watch this space for more info on storm development.

Mock Retrofit using Dagger and Mockito

Retrofit is one of the most popular REST client for Android, if you never use it, it is high time to start. There are a lot of articles and tutorial talking about Retrofit. I just would like to show how to mock a REST server during develop of app and i...Retrofit is one of the most popular REST client for Android, if you never use it, it is high time to start. There are a lot of articles and tutorial talking about Retrofit. I just would like to show how to mock a REST server during develop of app and i...