JBoss Envers and Spring transaction managers

I’ve stumbled upon a bug with my configuration for JBoss Envers today, despite having integration tests all over the application. I have to admit, it casted a dark shadow of doubt about the value of all the tests for a moment. I’ve been practicing TDD since 2005, and frankly speaking, I should have been smarter than that. My fault was simple. I’ve started using Envers the right way, with exploratory tests and a prototype. Then I’ve deleted the prototype and created some integration tests using in-memory H2 that looked more or less like this example: @Test public void savingAndUpdatingPersonShouldCreateTwoHistoricalVersions() { //given Person person = createAndSavePerson(); String oldFirstName = person.getFirstName(); String newFirstName = oldFirstName + "NEW"; //when updatePersonWithNewName(person, newFirstName); //then verifyTwoHistoricalVersionsWereSaved(oldFirstName, newFirstName); } private Person createAndSavePerson() { Transaction transaction = session.beginTransaction(); Person person = PersonFactory.createPerson(); session.save(person); transaction.commit(); return person; } private void updatePersonWithNewName(Person person, String newName) { Transaction transaction = session.beginTransaction(); person.setFirstName(newName); session.update(person); transaction.commit(); } private void verifyTwoHistoricalVersionsWereSaved(String oldFirstName, String newFirstName) { List<Object[]> personRevisions = getPersonRevisions(); assertEquals(2, personRevisions.size()); assertEquals(oldFirstName, ((Person)personRevisions.get(0)[0]).getFirstName()); assertEquals(newFirstName, ((Person)personRevisions.get(1)[0]).getFirstName()); } private List<Object[]> getPersonRevisions() { Transaction transaction = session.beginTransaction(); AuditReader auditReader = AuditReaderFactory.get(session); List<Object[]> personRevisions = auditReader.createQuery() .forRevisionsOfEntity(Person.class, false, true) .getResultList(); transaction.commit(); return personRevisions; } Because Envers inserts audit data when the transaction is commited (in a new temporary session), I thought I have to create and commit the transaction manually. And that is true to some point. My fault was that I didn’t have an end-to-end integration/acceptance test, that would call to entry point of the application (in this case a service which is called by GWT via RPC), because then I’d notice, that the Spring @Transactional annotation, and calling transaction.commit() are two, very different things. Spring @Transactional annotation will use a transaction manager configured for the application. Envers on the other hand is used by subscribing a listener to hibernate’s SessionFactory like this: <bean id="sessionFactory" class="org.springframework.orm.hibernate3.annotation.AnnotationSessionFactoryBean" > ... <property name="eventListeners"> <map key-type="java.lang.String" value-type="org.hibernate.event.EventListeners"> <entry key="post-insert" value-ref="auditEventListener"/> <entry key="post-update" value-ref="auditEventListener"/> <entry key="post-delete" value-ref="auditEventListener"/> <entry key="pre-collection-update" value-ref="auditEventListener"/> <entry key="pre-collection-remove" value-ref="auditEventListener"/> <entry key="post-collection-recreate" value-ref="auditEventListener"/> </map> </property> </bean> <bean id="auditEventListener" class="org.hibernate.envers.event.AuditEventListener" /> Envers creates and collects something called AuditWorkUnits whenever you update/delete/insert audited entities, but audit tables are not populated until something calls AuditProcess.beforeCompletion, which makes sense. If you are using org.hibernate.transaction.JDBCTransaction manually, this is called on commit() when notifying all subscribed javax.transaction.Synchronization objects (and enver’s AuditProcess is one of them). The problem was, that I used a wrong transaction manager. <bean id="transactionManager" class="org.springframework.jdbc.datasource.DataSourceTransactionManager" > <property name="dataSource" ref="dataSource"/> </bean> This transaction manager doesn’t know anything about hibernate and doesn’t use org.hibernate.transaction.JDBCTransaction. While Synchronization is an interface from javax.transaction package, DataSourceTransactionManager doesn’t use it (maybe because of simplicity, I didn’t dig deep enough in org.springframework.jdbc.datasource), and thus Envers works fine except not pushing the data to the database. Which is the whole point of using Envers. Use right tools for the task, they say. The whole problem is solved by using a transaction manager that is well aware of hibernate underneath. <bean id="transactionManager" class="org.springframework.orm.hibernate3.HibernateTransactionManager" > <property name="sessionFactory" ref="sessionFactory"/> </bean> Lesson learned: always make sure your acceptance tests are testing the right thing. If there is a doubt about the value of your tests, you just don’t have enough of them,

I’ve stumbled upon a bug with my configuration for JBoss Envers today, despite having integration tests all over the application. I have to admit, it casted a dark shadow of doubt about the value of all the tests for a moment. I’ve been practicing TDD since 2005, and frankly speaking, I should have been smarter than that.

My fault was simple. I’ve started using Envers the right way, with exploratory tests and a prototype. Then I’ve deleted the prototype and created some integration tests using in-memory H2 that looked more or less like this example:

@Test
public void savingAndUpdatingPersonShouldCreateTwoHistoricalVersions() {
    //given
    Person person = createAndSavePerson();
    String oldFirstName = person.getFirstName();
    String newFirstName = oldFirstName + "NEW";

    //when
    updatePersonWithNewName(person, newFirstName);

    //then
    verifyTwoHistoricalVersionsWereSaved(oldFirstName, newFirstName);
}

private Person createAndSavePerson() {
    Transaction transaction = session.beginTransaction();
    Person person = PersonFactory.createPerson();
    session.save(person);
    transaction.commit();
    return person;
}    

private void updatePersonWithNewName(Person person, String newName) {
    Transaction transaction = session.beginTransaction();
    person.setFirstName(newName);
    session.update(person);
    transaction.commit();
}

private void verifyTwoHistoricalVersionsWereSaved(String oldFirstName, String newFirstName) {
    List<Object[]> personRevisions = getPersonRevisions();
    assertEquals(2, personRevisions.size());
    assertEquals(oldFirstName, ((Person)personRevisions.get(0)[0]).getFirstName());
    assertEquals(newFirstName, ((Person)personRevisions.get(1)[0]).getFirstName());
}

private List<Object[]> getPersonRevisions() {
    Transaction transaction = session.beginTransaction();
    AuditReader auditReader = AuditReaderFactory.get(session);
    List<Object[]> personRevisions = auditReader.createQuery()
            .forRevisionsOfEntity(Person.class, false, true)
            .getResultList();
    transaction.commit();
    return personRevisions;
}

Because Envers inserts audit data when the transaction is commited (in a new temporary session), I thought I have to create and commit the transaction manually. And that is true to some point.

My fault was that I didn’t have an end-to-end integration/acceptance test, that would call to entry point of the application (in this case a service which is called by GWT via RPC), because then I’d notice, that the Spring @Transactional annotation, and calling transaction.commit() are two, very different things.

Spring @Transactional annotation will use a transaction manager configured for the application. Envers on the other hand is used by subscribing a listener to hibernate’s SessionFactory like this:

<bean id="sessionFactory" class="org.springframework.orm.hibernate3.annotation.AnnotationSessionFactoryBean" >        
...
 <property name="eventListeners">
     <map key-type="java.lang.String" value-type="org.hibernate.event.EventListeners">
         <entry key="post-insert" value-ref="auditEventListener"/>
         <entry key="post-update" value-ref="auditEventListener"/>
         <entry key="post-delete" value-ref="auditEventListener"/>
         <entry key="pre-collection-update" value-ref="auditEventListener"/>
         <entry key="pre-collection-remove" value-ref="auditEventListener"/>
         <entry key="post-collection-recreate" value-ref="auditEventListener"/>
     </map>
 </property>
</bean>

<bean id="auditEventListener" class="org.hibernate.envers.event.AuditEventListener" />

Envers creates and collects something called AuditWorkUnits whenever you update/delete/insert audited entities, but audit tables are not populated until something calls AuditProcess.beforeCompletion, which makes sense. If you are using org.hibernate.transaction.JDBCTransaction manually, this is called on commit() when notifying all subscribed javax.transaction.Synchronization objects (and enver’s AuditProcess is one of them).

The problem was, that I used a wrong transaction manager.

<bean id="transactionManager" class="org.springframework.jdbc.datasource.DataSourceTransactionManager" >
    <property name="dataSource" ref="dataSource"/>
</bean>

This transaction manager doesn’t know anything about hibernate and doesn’t use org.hibernate.transaction.JDBCTransaction. While Synchronization is an interface from javax.transaction package, DataSourceTransactionManager doesn’t use it (maybe because of simplicity, I didn’t dig deep enough in org.springframework.jdbc.datasource), and thus Envers works fine except not pushing the data to the database.

Which is the whole point of using Envers.

Use right tools for the task, they say. The whole problem is solved by using a transaction manager that is well aware of hibernate underneath.

<bean id="transactionManager" class="org.springframework.orm.hibernate3.HibernateTransactionManager" >
    <property name="sessionFactory" ref="sessionFactory"/>
</bean>

Lesson learned: always make sure your acceptance tests are testing the right thing. If there is a doubt about the value of your tests, you just don’t have enough of them,

You May Also Like

Thought static method can’t be easy to mock, stub nor track? Wrong!

No matter why, no matter is it a good idea. Sometimes one just wants to check or it's necessary to be done. Mock a static method, woot? Impossibru!

In pure Java world it is still a struggle. But Groovy allows you to do that really simple. Well, not groovy alone, but with a great support of Spock.

Lets move on straight to the example. To catch some context we have an abstract for the example needs. A marketing project with a set of offers. One to many.

import spock.lang.Specification

class OfferFacadeSpec extends Specification {

    OfferFacade facade = new OfferFacade()

    def setup() {
        GroovyMock(Project, global: true)
    }

    def 'delegates an add offer call to the domain with proper params'() {
        given:
            Map params = [projId: projectId, name: offerName]

        when:
            Offer returnedOffer = facade.add(params)

        then:
            1 * Project.addOffer(projectId, _) >> { projId, offer -> offer }
            returnedOffer.name == params.name

        where:
            projectId | offerName
            1         | 'an Offer'
            15        | 'whasup!?'
            123       | 'doskonała oferta - kup teraz!'
    }
}
So we test a facade responsible for handling "add offer to the project" call triggered  somewhere in a GUI.
We want to ensure that static method Project.addOffer(long, Offer) will receive correct params when java.util.Map with user form input comes to the facade.add(params).
This is unit test, so how Project.addOffer() works is out of scope. Thus we want to stub it.

The most important is a GroovyMock(Project, global: true) statement.
What it does is modifing Project class to behave like a Spock's mock. 
GroovyMock() itself is a method inherited from SpecificationThe global flag is necessary to enable mocking static methods.
However when one comes to the need of mocking static method, author of Spock Framework advice to consider redesigning of implementation. It's not a bad advice, I must say.

Another important thing are assertions at then: block. First one checks an interaction, if the Project.addOffer() method was called exactly once, with a 1st argument equal to the projectId and some other param (we don't have an object instance yet to assert anything about it).
Right shit operator leads us to the stub which replaces original method implementation by such statement.
As a good stub it does nothing. The original method definition has return type Offer. The stub needs to do the same. So an offer passed as the 2nd argument is just returned.
Thanks to this we can assert about name property if it's equal with the value from params. If no return was designed the name could be checked inside the stub Closure, prefixed with an assert keyword.

Worth of  mentioning is that if you want to track interactions of original static method implementation without replacing it, then you should try using GroovySpy instead of GroovyMock.

Unfortunately static methods declared at Java object can't be treated in such ways. Though regular mocks and whole goodness of Spock can be used to test pure Java code, which is awesome anyway :)No matter why, no matter is it a good idea. Sometimes one just wants to check or it's necessary to be done. Mock a static method, woot? Impossibru!

In pure Java world it is still a struggle. But Groovy allows you to do that really simple. Well, not groovy alone, but with a great support of Spock.

Lets move on straight to the example. To catch some context we have an abstract for the example needs. A marketing project with a set of offers. One to many.

import spock.lang.Specification

class OfferFacadeSpec extends Specification {

    OfferFacade facade = new OfferFacade()

    def setup() {
        GroovyMock(Project, global: true)
    }

    def 'delegates an add offer call to the domain with proper params'() {
        given:
            Map params = [projId: projectId, name: offerName]

        when:
            Offer returnedOffer = facade.add(params)

        then:
            1 * Project.addOffer(projectId, _) >> { projId, offer -> offer }
            returnedOffer.name == params.name

        where:
            projectId | offerName
            1         | 'an Offer'
            15        | 'whasup!?'
            123       | 'doskonała oferta - kup teraz!'
    }
}
So we test a facade responsible for handling "add offer to the project" call triggered  somewhere in a GUI.
We want to ensure that static method Project.addOffer(long, Offer) will receive correct params when java.util.Map with user form input comes to the facade.add(params).
This is unit test, so how Project.addOffer() works is out of scope. Thus we want to stub it.

The most important is a GroovyMock(Project, global: true) statement.
What it does is modifing Project class to behave like a Spock's mock. 
GroovyMock() itself is a method inherited from SpecificationThe global flag is necessary to enable mocking static methods.
However when one comes to the need of mocking static method, author of Spock Framework advice to consider redesigning of implementation. It's not a bad advice, I must say.

Another important thing are assertions at then: block. First one checks an interaction, if the Project.addOffer() method was called exactly once, with a 1st argument equal to the projectId and some other param (we don't have an object instance yet to assert anything about it).
Right shit operator leads us to the stub which replaces original method implementation by such statement.
As a good stub it does nothing. The original method definition has return type Offer. The stub needs to do the same. So an offer passed as the 2nd argument is just returned.
Thanks to this we can assert about name property if it's equal with the value from params. If no return was designed the name could be checked inside the stub Closure, prefixed with an assert keyword.

Worth of  mentioning is that if you want to track interactions of original static method implementation without replacing it, then you should try using GroovySpy instead of GroovyMock.

Unfortunately static methods declared at Java object can't be treated in such ways. Though regular mocks and whole goodness of Spock can be used to test pure Java code, which is awesome anyway :)