NoSQL devmeeting in Warsaw

I’ve spent this Saturday at NoSQL devmeetingin Warsaw, organized by Adam Lider, Piotr Zwoliński and lead by David de Rosier. At first I was reluctant to go, as my level of js mastery is clearly negative, and I have only theoretical knowledge about NoSQL databases, but as Maciej Próchniak noticed, these are exactly the reasons why I should.

The meeting started at 9am and lasted till 9pm (though I had to leave at 7pm), with one-hour break for lunch. David began with a gentle but fantastic introduction to CouchDB, MongoDB, Cassandra and Redis, after which we were split into groups of 3-4, each taking one of the databases aforementioned. Our task was simple: with four big MySQL (partitioned) dumps on the local SVN, we were to migrate the data to our NoSQL DB and then prepare a simple twitter application in any language we want, preferably javascript using Node.js. Our group took the hard way of playing with Node.js, easing it up with the choice of MongoDB (as it seems to have the best community and thus support). Node.js was more of an obstacle than help, mainly because of it asynchronous nature, but it’s quite possible that we just don’t know how to write good code in it. We definitely didn’t try much, being fine with “hey, it works!”, which is just right for the kind of hacking/prototyping we were into.

We had no problems with MongoDB. With Barack Obama’s 9 million followers in mind, we settled on the best model early, choosing eventual consistency and data duplication in the name of simplicity and query performance. Because I had to go two hours early, I’ve missed the part where we were to test the performance and try our luck with replication, but nonetheless this Saturday was clearly awesome. I loved the hackengarded at

33rd Degree, but devmeetings are even more fabulous. The formula is superb. If I were to add anything, it would be an open review of each application at the end. I’m really curious how other teams did it. Checkout devmeetings web page and if you have a chance to visit one, definitely go for it. It’s great, it’s free, and it’s one of the best ways to learn something useful fast.

You May Also Like

Zookeeper + Curator = Distributed sync

An application developed for one of my recent projects at TouK involved multiple servers. There was a requirement to ensure failover for the system’s components. Since I had already a few separate components I didn’t want to add more of that, and since there already was a Zookeeper ensemble running - required by one of the services, I’ve decided to go that way with my solution.

What is Zookeeper?

Just a crude distributed synchronization framework. However, it implements Paxos-style algorithms (http://en.wikipedia.org/wiki/Paxos_(computer_science)) to ensure no split-brain scenarios would occur. This is quite an important feature, since I don’t have to care about that kind of problems while using this app. You just need to create an ensemble of a couple of its instances - to ensure high availability. It is basically a virtual filesystem, with files, directories and stuff. One could ask why another filesystem? Well this one is a rather special one, especially for distributed systems. The reason why creating all the locking algorithms on top of Zookeeper is easy is its Ephemeral Nodes - which are just files that exist as long as connection for them exists. After it disconnects - such file disappears.

With such paradigms in place it’s fairly easy to create some high level algorithms for synchronization.

Having that in place, it can safely integrate multiple services ensuring loose coupling in a distributed way.

Zookeeper from developer’s POV

With all the base services for Zookeeper started, it seems there is nothing else, than just connect to it and start implementing necessary algorithms. Unfortunately, the API is quite basic and offers files and directories abstractions with the addition of different node type (file types) - ephemeral and sequence. It is also possible to watch a node for changes.

Using bare Zookeeper is hard!

Creating connections is tedious - and there is lots of things to take care of. Handling an established connection is hard - when establishing connection to ensemble, it’s necessary to negotiate a session also. During the whole process a number of exceptions can occur - these are “recoverable” exceptions, that can be gracefully handled and not break the connection.

    class="c8"><span>So, Zookeeper API is hard.</span></p><p class="c1"><span></span></p><p class="c8"><span>Even if one is proficient with that API, then there come recipes. The reason for using Zookeeper is to be able to implement some more sophisticated algorithms on top of it. Unfortunately those aren&rsquo;t trivial and it is again quite hard to implement them without bugs.</span>

And since distributed systems are hard, why would anyone want another difficult to handle tool?

Enter Curator

<p
    class="c8"><span>Happily, guys from Netflix implemented a nice abstraction for dealing with Zookeeper internals. They called it Curator and use it extensively in the company&rsquo;s environment. Curator offers consistent API for Zookeeper&rsquo;s functionality. It even implements a couple of recipes for distributed systems.</span>

File read/write

<p
    class="c8"><span>The basic use of Zookeeper is as a distributed configuration repository. For this scenario I only need read/write capabilities, to be able to write and read files from the Zookeeper filesystem. This code snippet writes a sample json to a file on ZK filesystem.</span>

<a href="#"
                                                                                                  name="0"></a>

EnsurePath ensurePath = new EnsurePath(markerPath);
ensurePath.ensure(client.getZookeeperClient());
String json = “...”;
if (client.checkExists().forPath(statusFile(core)) != null)
     client.setData().forPath(statusFile(core), json.getBytes());
else
     client.create().forPath(statusFile(core), json.getBytes());


Distributed locking

Having multiple systems there may be a need of using an exclusive lock for some resource, or perhaps some big system requires it’s components to synchronize based on locks. This “recipe” is an ideal match for those situations.

ref="#"
                                                                                    name="b0329bbbf14b79ffaba1139881914aea887ef6a3"></a>



lock = new InterProcessSemaphoreMutex(client, lockPath);
lock.acquire(5, TimeUnit.MINUTES);
… do sth …
lock.release();


 (from https://github.com/zygm0nt/curator-playground/blob/master/src/main/java/pl/touk/curator/LockingRemotely.java)

Sevice Advertisement

<p

    class="c8"><span>This is quite an interesting use case. With many small services on different servers it is not wise to exchange ip addresses and ports between them. When some of those services may go down, while other will try to replace them - the task gets even harder. </span>

That’s why, with Zookeeper in place, it can be utilised as a registry of existing services.

If a service starts, it registers into the ServiceRegistry, offering basic information, like it’s purpose, role, address, and port.

Services that want to use a specific kind of service request an access to some instance. This way of configuring easily decouples services from their configuration.

Basically this scenario needs ? steps:

<span>1. Service starts and registers its presence (</span><span class="c5"><a class="c0"
                                                                               href="https://github.com/zygm0nt/curator-playground/blob/master/src/main/java/pl/touk/curator/WorkerAdvertiser.java#L44">https://github.com/zygm0nt/curator-playground/blob/master/src/main/java/pl/touk/curator/WorkerAdvertiser.java#L44</a></span><span>)</span><span>:</span>



ServiceDiscovery discovery = getDiscovery();
            discovery.start();
            ServiceInstance si = getInstance();
            log.info(si);
            discovery.registerService(si);



2. Another service - on another host or in another JVM on the same machine tries to discover who is implementing the service (https://github.com/zygm0nt/curator-playground/blob/master/src/main/java/pl/touk/curator/WorkerFinder.java#L50):

<a href="#"

                                                                                                  name="3"></a>

instances = discovery.queryForInstances(serviceName);

The whole concept here is ridiculously simple - the service advertising its presence just stores a file with its whereabouts. The service that is looking for service providers just look into specific directory and read stored definitions.

In my example, the structure advertised by services looks like this (+ some getters and constructor - the rest is here: https://github.com/zygm0nt/curator-playground/blob/master/src/main/java/pl/touk/model/WorkerMetadata.java):



public final class WorkerMetadata {
    private final UUID workerId;
    private final String listenAddress;
    private final int listenPort;
}


Source code

<p

    class="c8"><span>The above recipes are available in Curator library (</span><span class="c5"><a class="c0"
                                                                                                    href="http://curator.incubator.apache.org/">http://curator.incubator.apache.org/</a></span><span>). Recipes&rsquo;
usage examples are in my github repo at </span><span class="c5"><a class="c0"
                                                                   href="https://github.com/zygm0nt/curator-playground">https://github.com/zygm0nt/curator-playground</a></span>

Conclusion

<p
    class="c8"><span>If you&rsquo;re in need of a reliable platform for exchanging data and managing synchronization, and you need to do it in a distributed fashion - just choose Zookeeper. Then add Curator for the ease of using it. Enjoy!</span>


  1. image comes from: http://www.flickr.com/photos/jfgallery/2993361148
  2. all source code fragments taken from this repo: https://github.com/zygm0nt/curator-playground

An application developed for one of my recent projects at TouK involved multiple servers. There was a requirement to ensure failover for the system’s components. Since I had already a few separate components I didn’t want to add more of that, and since there already was a Zookeeper ensemble running - required by one of the services, I’ve decided to go that way with my solution.

What is Zookeeper?

Just a crude distributed synchronization framework. However, it implements Paxos-style algorithms (http://en.wikipedia.org/wiki/Paxos_(computer_science)) to ensure no split-brain scenarios would occur. This is quite an important feature, since I don’t have to care about that kind of problems while using this app. You just need to create an ensemble of a couple of its instances - to ensure high availability. It is basically a virtual filesystem, with files, directories and stuff. One could ask why another filesystem? Well this one is a rather special one, especially for distributed systems. The reason why creating all the locking algorithms on top of Zookeeper is easy is its Ephemeral Nodes - which are just files that exist as long as connection for them exists. After it disconnects - such file disappears.

With such paradigms in place it’s fairly easy to create some high level algorithms for synchronization.

Having that in place, it can safely integrate multiple services ensuring loose coupling in a distributed way.

Zookeeper from developer’s POV

With all the base services for Zookeeper started, it seems there is nothing else, than just connect to it and start implementing necessary algorithms. Unfortunately, the API is quite basic and offers files and directories abstractions with the addition of different node type (file types) - ephemeral and sequence. It is also possible to watch a node for changes.

Using bare Zookeeper is hard!

Creating connections is tedious - and there is lots of things to take care of. Handling an established connection is hard - when establishing connection to ensemble, it’s necessary to negotiate a session also. During the whole process a number of exceptions can occur - these are “recoverable” exceptions, that can be gracefully handled and not break the connection.

    class="c8"><span>So, Zookeeper API is hard.</span></p><p class="c1"><span></span></p><p class="c8"><span>Even if one is proficient with that API, then there come recipes. The reason for using Zookeeper is to be able to implement some more sophisticated algorithms on top of it. Unfortunately those aren&rsquo;t trivial and it is again quite hard to implement them without bugs.</span>

And since distributed systems are hard, why would anyone want another difficult to handle tool?

Enter Curator

<p
    class="c8"><span>Happily, guys from Netflix implemented a nice abstraction for dealing with Zookeeper internals. They called it Curator and use it extensively in the company&rsquo;s environment. Curator offers consistent API for Zookeeper&rsquo;s functionality. It even implements a couple of recipes for distributed systems.</span>

File read/write

<p
    class="c8"><span>The basic use of Zookeeper is as a distributed configuration repository. For this scenario I only need read/write capabilities, to be able to write and read files from the Zookeeper filesystem. This code snippet writes a sample json to a file on ZK filesystem.</span>

<a href="#"
                                                                                                  name="0"></a>

EnsurePath ensurePath = new EnsurePath(markerPath);
ensurePath.ensure(client.getZookeeperClient());
String json = “...”;
if (client.checkExists().forPath(statusFile(core)) != null)
     client.setData().forPath(statusFile(core), json.getBytes());
else
     client.create().forPath(statusFile(core), json.getBytes());


Distributed locking

Having multiple systems there may be a need of using an exclusive lock for some resource, or perhaps some big system requires it’s components to synchronize based on locks. This “recipe” is an ideal match for those situations.

ref="#"
                                                                                    name="b0329bbbf14b79ffaba1139881914aea887ef6a3"></a>



lock = new InterProcessSemaphoreMutex(client, lockPath);
lock.acquire(5, TimeUnit.MINUTES);
… do sth …
lock.release();


 (from https://github.com/zygm0nt/curator-playground/blob/master/src/main/java/pl/touk/curator/LockingRemotely.java)

Sevice Advertisement

<p

    class="c8"><span>This is quite an interesting use case. With many small services on different servers it is not wise to exchange ip addresses and ports between them. When some of those services may go down, while other will try to replace them - the task gets even harder. </span>

That’s why, with Zookeeper in place, it can be utilised as a registry of existing services.

If a service starts, it registers into the ServiceRegistry, offering basic information, like it’s purpose, role, address, and port.

Services that want to use a specific kind of service request an access to some instance. This way of configuring easily decouples services from their configuration.

Basically this scenario needs ? steps:

<span>1. Service starts and registers its presence (</span><span class="c5"><a class="c0"
                                                                               href="https://github.com/zygm0nt/curator-playground/blob/master/src/main/java/pl/touk/curator/WorkerAdvertiser.java#L44">https://github.com/zygm0nt/curator-playground/blob/master/src/main/java/pl/touk/curator/WorkerAdvertiser.java#L44</a></span><span>)</span><span>:</span>



ServiceDiscovery discovery = getDiscovery();
            discovery.start();
            ServiceInstance si = getInstance();
            log.info(si);
            discovery.registerService(si);



2. Another service - on another host or in another JVM on the same machine tries to discover who is implementing the service (https://github.com/zygm0nt/curator-playground/blob/master/src/main/java/pl/touk/curator/WorkerFinder.java#L50):

<a href="#"

                                                                                                  name="3"></a>

instances = discovery.queryForInstances(serviceName);

The whole concept here is ridiculously simple - the service advertising its presence just stores a file with its whereabouts. The service that is looking for service providers just look into specific directory and read stored definitions.

In my example, the structure advertised by services looks like this (+ some getters and constructor - the rest is here: https://github.com/zygm0nt/curator-playground/blob/master/src/main/java/pl/touk/model/WorkerMetadata.java):



public final class WorkerMetadata {
    private final UUID workerId;
    private final String listenAddress;
    private final int listenPort;
}


Source code

<p

    class="c8"><span>The above recipes are available in Curator library (</span><span class="c5"><a class="c0"
                                                                                                    href="http://curator.incubator.apache.org/">http://curator.incubator.apache.org/</a></span><span>). Recipes&rsquo;
usage examples are in my github repo at </span><span class="c5"><a class="c0"
                                                                   href="https://github.com/zygm0nt/curator-playground">https://github.com/zygm0nt/curator-playground</a></span>

Conclusion

<p
    class="c8"><span>If you&rsquo;re in need of a reliable platform for exchanging data and managing synchronization, and you need to do it in a distributed fashion - just choose Zookeeper. Then add Curator for the ease of using it. Enjoy!</span>


  1. image comes from: http://www.flickr.com/photos/jfgallery/2993361148
  2. all source code fragments taken from this repo: https://github.com/zygm0nt/curator-playground