Modular Web Application using Eclipse Snaps

Few days ago, new milestone 3.0.0.M03 of Eclipse Virgo was released. Final release of this well prepared OSGi-based application Server getting closer so I decided to take a look at how to use it to write simple modular web application.

What does it mean a modular web application in OSGi environment? I imagine that this application should:

1) Change their look after installation of some extensions.

2) Also we should be able to write new request handlers for our application or modify flow control of existed.

First idea which occurred to me how to resolve first mentioned problem is to use fragment bundles mechanism. Fragment bundles give opportunity to create bundles with resources and classes which will be accessible from host bundle classloader. A key use case of its was “providing translation files for different locales“. So we can do few fragments with jsp files which should be able to include in index servlet page. Also we can provide some configuration files with class names of new request handlers which could be created using java reflection.

But fragment bundles have some disadvantages. How we can read in specification: “The new content of the updated fragment must not be allowed to attach to the host bundles until the Framework is restarted or the host bundle is refreshed“. This mean that we cannot do installation of extention without refreshing host bundle. Also new jsps must be compiled as a part of host application’s jsps so it is second reason why host bundle should be restarted. The last thing is that fragment bundles can’t have Bundle Activator which is also useful in many cases.

Eclipse Virgo gives component which resolves this problems – Virgo Snaps. It is easy in use extension which helps create modular web application framework. Sources are available here

After build of project and copy artifacts to virgo:

cd build-snaps

ant jar

cd ..

cp org.eclipse.virgo.snaps.api/target/artifacts/org.eclipse.virgo.snaps.api.jar ${virgo.home}/repository/usr/

cp org.eclipse.virgo.snaps.core/target/artifacts/org.eclipse.virgo.snaps.core.jar ${virgo.home}/repository/usr/

… and restart of server, we are ready to use snaps.

In samples dir there is example menu-bar showing idea of Snaps. In host bundle – animal.menu.bar we can see in top.jsp usage of taglib snaps:

  • “> ${snap.properties[‘link.text’]}

 

 

It is simple way to iterate through snaps associated with this host. Only thing which we must to do is to add this snippet to MANIFEST.MF:

Snap-Host: animal.menu.bar;version="[1.0, 2.0)"

Snap-ContextPath: /cat

In first line we are manifesting that this snap will be used as a part of host animal.menu.bar. In the second that all servlets will be deployed in this subcontext of context of host.

In this example also were used properties from file snap.properties which are available in session as attribute properties of snap.

After install host bundle at url: http://localhost:8080/animal-menu-bar we can see page without menu items. After installation of new items are become available.

You May Also Like

Clojure web development – state of the art

It’s now more than a year that I’m getting familiar with Clojure and the more I dive into it, the more it becomes the language. Once you defeat the “parentheses fear”, everything else just makes the difference: tooling, community, good engineering practices. So it’s now time for me to convince others. In this post I’ll try to walktrough a simple web application from scratch to show key tools and libraries used to develop with Clojure in late 2015.

Note for Clojurians: This material is rather elementary and may be useful for you if you already know Clojure a bit but never did anything bigger than hello world application.

Note for Java developers: This material shows how to replace Spring, Angular, grunt, live-reload with a bunch of Clojure tools and libraries and a bit of code.

The repo with final code and individual steps is here.

Bootstrap

I think all agreed that component is the industry standard for managing lifecycle of Clojure applications. If you are a Java developer you may think of it as a Spring (DI) replacement - you declare dependencies between “components” which are resolved on “system” startup. So you just say “my component needs a repository/database pool” and component library “injects” it for you.

To keep things simple I like to start with duct web app template. It’s a nice starter component application following the 12-factor philosophy. So let’s start with it:

lein new duct clojure-web-app +example

The +example parameter tells duct to create an example endpoint with HTTP routes - this would be helpful. To finish bootstraping run lein setup inside clojure-web-app directory.

Ok, let’s dive into the code. Component and injection related code should be in system.clj file:

(defn new-system [config]
  (let [config (meta-merge base-config config)]
    (-> (component/system-map
         :app  (handler-component (:app config))
         :http (jetty-server (:http config))
         :example (endpoint-component example-endpoint))
        (component/system-using
         {:http [:app]
          :app  [:example]
          :example []}))))

In the first section you instantiate components without dependencies, which are resolved in the second section. So in this example, “http” component (server) requires “app” (application abstraction), which in turn is injected with “example” (actual routes). If your component needs others, you just can get then by names (precisely: by Clojure keywords).

To start the system you must fire a REPL - interactive environment running within context of your application:

lein repl

After seeing prompt type (go). Application should start, you can visit http://localhost:3000 to see some example page.

A huge benefit of using component approach is that you get fully reloadable application. When you change literally anything - configuration, endpoints, implementation, you can just type (reset) in REPL and your application is up-to-date with the code. It’s a feature of the language, no JRebel, Spring-reloaded needed.

Adding REST endpoint

Ok, in the next step let’s add some basic REST endpoint returning JSON. We need to add 2 dependencies in project.clj file:

:dependencies
 ...
  [ring/ring-json "0.3.1"]
  [cheshire "5.1.1"]

Ring-json adds support for JSON for your routes (in ring it’s called middleware) and cheshire is Clojure JSON parser (like Jackson in Java). Modifying project dependencies if one of the few tasks that require restarting the REPL, so hit CTRL-C and type lein repl again.

To configure JSON middleware we have to add wrap-json-body and wrap-json-response just before wrap-defaults in system.clj:

(:require 
 ...
 [ring.middleware.json :refer [wrap-json-body wrap-json-response]])

(def base-config
   {:app {:middleware [[wrap-not-found :not-found]
                      [wrap-json-body {:keywords? true}]
                      [wrap-json-response]
                      [wrap-defaults :defaults]]

And finally, in endpoint/example.clj we must add some route with JSON response:

(:require 
 ...
 [ring.util.response :refer [response]]))

(defn example-endpoint [config]
  (routes
    (GET "/hello" [] (response {:hello "world"}))
    ...

Reload app with (reset) in REPL and test new route with curl:

curl -v http://localhost:3000/hello

< HTTP/1.1 200 OK
< Date: Tue, 15 Sep 2015 21:17:37 GMT
< Content-Type: application/json; charset=utf-8
< Set-Cookie: ring-session=37c337fb-6bbc-4e65-a060-1997718d03e0;Path=/;HttpOnly
< X-XSS-Protection: 1; mode=block
< X-Frame-Options: SAMEORIGIN
< X-Content-Type-Options: nosniff
< Content-Length: 151
* Server Jetty(9.2.10.v20150310) is not blacklisted
< Server: Jetty(9.2.10.v20150310)
<
* Connection #0 to host localhost left intact
{"hello": "world"}

It works! In case of any problems you can find working version in this commit.

Adding frontend with figwheel

Coding backend in Clojure is great, but what about the frontend? As you may already know, Clojure could be compiled not only to JVM bytecode, but also to Javascript. This may sound familiar if you used e.g. Coffescript. But ClojureScript philosophy is not only to provide some syntax sugar, but improve your development cycle with great tooling and fully interactive development. Let’s see how to achieve it.

The best way to introduce ClojureScript to a project is figweel. First let’s add fighweel plugin and configuration to project.clj:

:plugins
   ...
   [lein-figwheel "0.3.9"]

And cljsbuild configuration:

:cljsbuild
    {:builds [{:id "dev"
               :source-paths ["src-cljs"]
               :figwheel true
               :compiler {:main       "clojure-web-app.core"
                          :asset-path "js/out"
                          :output-to  "resources/public/js/clojure-web-app.js"
                          :output-dir "resources/public/js/out"}}]}

In short this tells ClojureScript compiler to take sources from src-cljs with figweel support and but resulting JavaScript into resources/public/js/clojure-web-app.js file. So we need to include this file in a simple HTML page:

<!DOCTYPE html>
<head>
</head>
<body>
  <div id="main">
  </div>
  <script src="js/clojure-web-app.js" type="text/javascript"></script>
</body>
</html>

To serve this static file we need to change some defaults and add corresponding route. In system.clj change api-defaults to site-defaults both in require section and base-config function. In example.clj add following route:

(GET "/" [] (io/resource "public/index.html")

Again (reset) in REPL window should reload everything.

But where is our ClojureScript source file? Let’s create file core.cljs in src-cljs/clojure-web-app directory:

(ns ^:figwheel-always clojure-web-app.core)

(enable-console-print!)

(println "hello from clojurescript")

Open another terminal and run lein fighweel. It should compile ClojureScript and print ‘Prompt will show when figwheel connects to your application’. Open http://localhost:3000. Fighweel window should prompt:

To quit, type: :cljs/quit
cljs.user=>

Type (js/alert "hello"). Boom! If everything worked you should see and alert in your browser. Open developers console in your browser. You should see hello from clojurescript printed on the console. Change it in core.cljs to (println "fighweel rocks") and save the file. Without reloading the page your should see updated message. Figweel rocks! Again, in case of any problems, refer to this commit.

In the next post I’ll show how to fetch data from MongoDB, serve it with REST to the broser and write ReactJs/Om components to render it. Stay tuned!

Micro services on the JVM part 1 – Clojure

Micro services could be a buzzword of 2014 for me. Few months ago I was curious to try Dropwizard framework as a separate backend, but didn’t get the whole idea yet. But then I watched a mind-blowing “Micro-Services Architecture” talk by Fred George. Also, the 4.0 release notes of Spring covers microservices as an important rising trend as well. After 10 years of having SOA in mind, but still developing monoliths, it’s a really tempting idea to try to decouple systems into a set of independently developed and deployed RESTful services.

Micro services could be a buzzword of 2014 for me. Few months ago I was curious to try Dropwizard framework as a separate backend, but didn’t get the whole idea yet. But then I watched a mind-blowing “Micro-Services Architecture” talk by Fred George. Also, the 4.0 release notes of Spring covers microservices as an important rising trend as well. After 10 years of having SOA in mind, but still developing monoliths, it’s a really tempting idea to try to decouple systems into a set of independently developed and deployed RESTful services.