Subtle feature of CONNECT BY

Hierarchical queries (CONNECT BY … START WITH …) are used when retrieving data from tree-like structures. You use them if for example you want to retrieve all people who are directly or indirectly below a certain person in a company hierarchy. However, if you use joins and add some other conditions in the WHERE clause then the effect of the query is not obvious.

The good description of hierarchical queries can be found on the page

http://download.oracle.com/docs/cd/B10501_01/server.920/a96540/queries4a.htm#2053937 There are 2 important points in this article:
* If the|WHERE| predicate contains a join, Oracle applies the join predicates /before/ doing the |CONNECT| |BY| processing.
* If the |WHERE| clause does not contain a join, Oracle applies all predicates other than the|CONNECT| |BY| predicates _/after/_doing the |CONNECT| |BY|processing without affecting the other rows of the hierarchy. What does it mean? How does it work? In order to explain this I will describe the error I came across before I understood how the hierarchical queries really work. The query was meant to return all direct and not direct superiors for a given customer (some customers work in companies).

SELECT c.* FROM customer_all c
CONNECT BY PRIOR c.customer_id_high = c.customer_id
START WITH c.customer_id = :cust_id

This worked fine. However we had to change the query in order to return billing address of customers. Each customer can have many addresses, but only one of them is a billing one. Such address has the flag CCBILL set to ‘X’. Thus, the query was changed into this one:

SELECT level, c.*, cc.*
  FROM customer_all c,
       ccontact_all cc
 WHERE c.customer_id = cc.customer_id
   AND cc.ccbill = 'X'
CONNECT BY PRIOR c.customer_id_high = c.customer_id
START WITH c.customer_id = :cust_id

That was a mistake. The condition c.customer_id = cc.customer_id was applied before CONNECT BY whearas cc.ccbill = ‘X’ was executed after CONNECT BY. A customer (let’s suppose his/her customer_id = 123456) had two addresses, while his superior had one address and his superior’s superior had also one address. The query was executed in the following way (I omit stage irrelevant to this example): Stage 1: 2 records are found for the client 123456: one for his billing address and one for another address. They have LEVEL=1 Stage 2: CONNECT BY clause is applied to both records with LEVEL=1 from the previous stage. Thus, the superior of 123456 is added twice to the result set and there are two records with LEVEL=2 Stage 3: CONNECT BY clause is applied to both records with LEVEL=2 from the previous stage. Thus the superior of the superior of 123456 is added twice to the result set and there are two records with LEVEL=3 Stage 4: The non-billing address of customer 123456 is removed from the result set, but his superiors records which were added because of this record are not removed, as their address is not a billing one (they do not have any non-billing address). As a result, the query returned 5 records, although it was expected to return 3 records. The records of the superior and superior’s superior were duplicated because of the second address of 123456. The record with the second address was removed but the branch it created was preserved. The solution was to check in CONNECT BY clause if the address in the PRIOR record is the billing one

SELECT level, c.*, cc.*
  FROM customer_all c, ccontact_all cc
 WHERE c.customer_id = cc.customer_id
   AND cc.ccbill = 'X'
CONNECT BY PRIOR c.customer_id_high = c.customer_id
       AND PRIOR cc.ccbill = 'X'
 START WITH c.customer_id = :cust_id

There is a clearer solution available – to make a join with addresses table after executing the hierarchical query:

SELECT *
  FROM (SELECT c. *
          FROM customer_all c,
        CONNECT BY PRIOR c.customer_id_high = c.customer_id
         START WITH c.customer_id = :cust_id) c,
       ccontract_all cc
 WHERE c.customer_id = cc.customer_id
   AND cc.ccbill = 'X'

There is another interesting issue. When I changed the join to ANSI style (JOIN … ON instead of condition in the WHERE clause) then the execution time increased a few hundred thousand times. It seems that Oracle 9 on which I tested this query does not cope well with ANSI join syntax. This is not a surprise. Once we had to rapidly convert many views in a system. They used ANSI-style joins and when they were used in queries using Oracle-style joins then their performance dropped rapidly. We had to convert the views to use Oracle-style joins.

You May Also Like

How to automate tests with Groovy 2.0, Spock and Gradle

This is the launch of the 1st blog in my life, so cheers and have a nice reading!

y u no test?

Couple of years ago I wasn't a big fan of unit testing. It was obvious to me that well prepared unit tests are crucial though. I didn't known why exactly crucial yet then. I just felt they are important. My disliking to write automation tests was mostly related to the effort necessary to prepare them. Also a spaghetti code was easily spotted in test sources.

Some goodies at hand

Now I know! Test are crucial to get a better design and a confidence. Confidence to improve without a hesitation. Moreover, now I have the tool to make test automation easy as Sunday morning... I'm talking about the Spock Framework. If you got here probably already know what the Spock is, so I won't introduce it. Enough to say that Spock is an awesome unit testing tool which, thanks to Groovy AST Transformation, simplifies creation of tests greatly.

An obstacle

The point is, since a new major version of Groovy has been released (2.0), there is no matching version of Spock available yet.

What now?

Well, in a matter of fact there is such a version. It's still under development though. It can be obtained from this Maven repository. We can of course use the Maven to build a project and run tests. But why not to go even more "groovy" way? XML is not for humans, is it? Lets use Gradle.

The build file

Update: at the end of the post is updated version of the build file.
apply plugin: 'groovy'
apply plugin: 'idea'

def langLevel = 1.7

sourceCompatibility = langLevel
targetCompatibility = langLevel

group = 'com.tamashumi.example.testwithspock'
version = '0.1'

repositories {
mavenLocal()
mavenCentral()
maven { url 'http://oss.sonatype.org/content/repositories/snapshots/' }
}

dependencies {
groovy 'org.codehaus.groovy:groovy-all:2.0.1'
testCompile 'org.spockframework:spock-core:0.7-groovy-2.0-SNAPSHOT'
}

idea {
project {
jdkName = langLevel
languageLevel = langLevel
}
}
As you can see the build.gradle file is almost self-explanatory. Groovy plugin is applied to compile groovy code. It needs groovy-all.jar - declared in version 2.0 at dependencies block just next to Spock in version 0.7. What's most important, mentioned Maven repository URL is added at repositories block.

Project structure and execution

Gradle's default project directory structure is similar to Maven's one. Unfortunately there is no 'create project' task and you have to create it by hand. It's not a big obstacle though. The structure you will create will more or less look as follows:
<project root>

├── build.gradle
└── src
├── main
│ ├── groovy
└── test
└── groovy
To build a project now you can type command gradle build or gradle test to only run tests.

How about Java?

You can test native Java code with Spock. Just add src/main/java directory and a following line to the build.gradle:
apply plugin: 'java'
This way if you don't want or just can't deploy Groovy compiled stuff into your production JVM for any reason, still whole goodness of testing with Spock and Groovy is at your hand.

A silly-simple example

Just to show that it works, here you go with a basic example.

Java simple example class:

public class SimpleJavaClass {

public int sumAll(int... args) {

int sum = 0;

for (int arg : args){
sum += arg;
}

return sum;
}
}

Groovy simple example class:

class SimpleGroovyClass {

String concatenateAll(char separator, String... args) {

args.join(separator as String)
}
}

The test, uhm... I mean the Specification:

class JustASpecification extends Specification {

@Unroll('Sums integers #integers into: #expectedResult')
def "Can sum different amount of integers"() {

given:
def instance = new SimpleJavaClass()

when:
def result = instance.sumAll(* integers)

then:
result == expectedResult

where:
expectedResult | integers
11 | [3, 3, 5]
8 | [3, 5]
254 | [2, 4, 8, 16, 32, 64, 128]
22 | [7, 5, 6, 2, 2]
}

@Unroll('Concatenates strings #strings with separator "#separator" into: #expectedResult')
def "Can concatenate different amount of integers with a specified separator"() {

given:
def instance = new SimpleGroovyClass()

when:
def result = instance.concatenateAll(separator, * strings)

then:
result == expectedResult

where:
expectedResult | separator | strings
'Whasup dude?' | ' ' as char | ['Whasup', 'dude?']
'2012/09/15' | '/' as char | ['2012', '09', '15']
'nice-to-meet-you' | '-' as char | ['nice', 'to', 'meet', 'you']
}
}
To run tests with Gradle simply execute command gradle test. Test reports can be found at <project root>/build/reports/tests/index.html and look kind a like this.


Please note that, thanks to @Unroll annotation, test is executed once per each parameters row in the 'table' at specification's where: block. This isn't a Java label, but a AST transformation magic.

IDE integration

Gradle's plugin for Iintellij Idea

I've added also Intellij Idea plugin for IDE project generation and some configuration for it (IDE's JDK name). To generate Idea's project files just run command: gradle idea There are available Eclipse and Netbeans plugins too, however I haven't tested them. Idea's one works well.

Intellij Idea's plugins for Gradle

Idea itself has a light Gradle support built-in on its own. To not get confused: Gradle has plugin for Idea and Idea has plugin for Gradle. To get even more 'pluginated', there is also JetGradle plugin within Idea. However I haven't found good reason for it's existence - well, maybe excluding one. It shows dependency tree. There is a bug though - JetGradle work's fine only for lang level 1.6. Strangely all the plugins together do not conflict each other. They even give complementary, quite useful tool set.

Running tests under IDE

Jest to add something sweet this is how Specification looks when run with jUnit  runner under Intellij Idea (right mouse button on JustASpecification class or whole folder of specification extending classes and select "Run ...". You'll see a nice view like this.

Building web application

If you need to build Java web application and bundle it as war archive just add plugin by typing the line
apply plugin: 'war'
in the build.gradle file and create a directory src/main/webapp.

Want to know more?

If you haven't heard about Spock or Gradle before or just curious, check the following links:

What next?

The last thing left is to write the real production code you are about to test. No matter will it be Groovy or Java, I leave this to your need and invention. Of course, you are welcome to post a comments here. I'll answer or even write some more posts about the subject.

Important update

Spock version 0.7 has been released, so the above build file doesn't work anymore. It's easy to fix it though. Just remove last dash and a word SNAPSHOT from Spock dependency declaration. Other important thing is that now spock-core depends on groovy-all-2.0.5, so to avoid dependency conflict groovy dependency should be changed from version 2.0.1 to 2.0.5.
Besides oss.sonata.org snapshots maven repository can be removed. No obstacles any more and the build file now looks as follows:
apply plugin: 'groovy'
apply plugin: 'idea'

def langLevel = 1.7

sourceCompatibility = langLevel
targetCompatibility = langLevel

group = 'com.tamashumi.example.testwithspock'
version = '0.1'

repositories {
mavenLocal()
mavenCentral()
}

dependencies {
groovy 'org.codehaus.groovy:groovy-all:2.0.5'
testCompile 'org.spockframework:spock-core:0.7-groovy-2.0'
}

idea {
project {
jdkName = langLevel
languageLevel = langLevel
}
}