Passive view for Ext GWT applications

Seeing “Google Web Toolkit Architecture: Best Practices For Architecting Your GWT App” presentation by Ray Ryan coincided with the start of a new project – an Ext GWT front-end application for one of our clients. We liked the idea of testing front-end code entirely in JRE so we decided to give the model view presenter approach to building front-ends a try. Unfortunately, GXT widgets come with no fine-grained interfaces like GWT’s HasValue. Our display interfaces quickly ended up returning GXT widgets – hard to mock or even not possible to instantiate in JRE due to JSNI. We had to come up with a solution and do it fast. Technical debt had been registered on the project backlog and in a couple of days we had an opportunity to work on this. We developed several simple interfaces that let us compose display interfaces using this common vocabulary and factory class that returns implementations for standard GXT widgets. It is good to think about returned implementations as gateways that provide simple API whose implementation can be easily substituted by some test double. It’s better to look at some actual code, this should make everything more clear. The first of the interfaces is HasValue:

public interface HasValue {
    T getValue();
    void setValue(T value);
}

we have others – for selection, clicking, double clicking …

public interface HasSelected {
    public static interface Handler {
        void onSelected();
    }
    public void addHandler(Handler h);
}

Corresponding factory methods …

public static HasValue createHasValue(final Label label) {
    return new HasValue() {
        @Override
        public void setValue(String value) {
            label.setText(value);
        }

        @Override
        public String getValue() {
            return label.getText();
        }
    };
}
public static HasSelected createHasSelected(final Button button) {
    return new HasSelected() {

        @Override
        public void addHandler(final Handler handler) {
            button.addSelectionListener(new SelectionListener() {

                @Override
                public void componentSelected(ButtonEvent ce) {
                    handler.onSelected();
                }
            });
        }
    };
}

Now it is easy to build Display interfaces:

public class MyPresenter {

    public static interface Display {

        HasSelected getMyButtonSelected();

        HasValue getName();
    }

...
}

and their implementations:

public HasSelected getMyButtonSelected() {
    return DisplayMemberFactory.createHasSelected(myButton);
}

Simple.

You May Also Like

Inconsistent Dependency Injection to domains with Grails

I've encountered strange behavior with a domain class in my project: services that should be injected were null. I've became suspicious as why is that? Services are injected properly in other domain classes so why this one is different?

Constructors experiment

I've created an experiment. I've created empty LibraryService that should be injected and Book domain class like this:

class Book {
def libraryService

String author
String title
int pageCount

Book() {
println("Finished constructor Book()")
}

Book(String author) {
this()
this.@author = author
println("Finished constructor Book(String author)")
}

Book(String author, String title) {
super()
this.@author = author
this.@title = title
println("Finished constructor Book(String author, String title)")
}

Book(String author, String title, int pageCount) {
this.@author = author
this.@title = title
this.@pageCount = pageCount
println("Finished constructor Book(String author, String title, int pageCount)")
}

void logInjectedService() {
println(" Service libraryService is injected? -> $libraryService")
}
}
class LibraryService {
def serviceMethod() {
}
}

Book has 4 explicit constructors. I want to check which constructor is injecting dependecies. This is my method that constructs Book objects and I called it in controller:

class BookController {
def index() {
constructAndExamineBooks()
}

static constructAndExamineBooks() {
println("Started constructAndExamineBooks")
Book book1 = new Book().logInjectedService()
Book book2 = new Book("foo").logInjectedService()
Book book3 = new Book("foo", 'bar').logInjectedService()
Book book4 = new Book("foo", 'bar', 100).logInjectedService()
Book book5 = new Book(author: "foo", title: 'bar')
println("Finished constructor Book(Map params)")
book5.logInjectedService()
}
}

Analysis

Output looks like this:

Started constructAndExamineBooks
Finished constructor Book()
Service libraryService is injected? -> eu.spoonman.refaktor.LibraryService@2affcce2
Finished constructor Book()
Finished constructor Book(String author)
Service libraryService is injected? -> eu.spoonman.refaktor.LibraryService@2affcce2
Finished constructor Book(String author, String title)
Service libraryService is injected? -> null
Finished constructor Book(String author, String title, int pageCount)
Service libraryService is injected? -> null
Finished constructor Book()
Finished constructor Book(Map params)
Service libraryService is injected? -> eu.spoonman.refaktor.LibraryService@2affcce2

What do we see?

  1. Empty constructor injects dependencies.
  2. Constructor that invokes empty constructor explicitly injects dependencies.
  3. Constructor that invokes parent's constructor explicitly does not inject dependencies.
  4. Constructor without any explicit call declared does not call empty constructor thus it does not inject dependencies.
  5. Constructor provied by Grails with a map as a parameter invokes empty constructor and injects dependencies.

Conclusion

Always explicitily invoke empty constructor in your Grail domain classes to ensure Dependency Injection! I didn't know until today either!