Chaining job execution in Quartz

Quartz javaThere isn’t explicit way to chain jobs in Quartz. However this is still possible, by doing some tricks. Here is an explanation on how to do that (in very few words).

There are two ways to put job in chain:
– first one, by using Listeners( for example JobChainingJobListener),
– and the second one, by using JobDataMap which every job contains.
I prefer the second way with JobDataMaps. Why ? Because DataMaps are persistent so information about chained jobs survives restart of the server.

Chain is nothing more than normal queue of the jobs, so to put two jobs into chain we need to create queue from them. Queue should be bidirectional to allow easy manipulation. The idea is to put 4 properties into JobDataMaps:
– nextJobName, nextJobGroup – identify next job in chain
– previousJobName, previousJobGroup – identify previous job in chain

Those 4 variables are enough to implement standard bi-directional queue operations like: addJobToQueue(..), removeFromQueue(..), moveUp(..) and moveDown(..). One thing to remeber: adding job to chain should stop it, to avoid triggering jobs in unspecified order.

Last thing to do is to create own implementation of the Quartz Job interface which, in execute() method, will fire/trigger next job in chain, if there is any.

That’s all.

You May Also Like

Spock, Java and Maven

Few months ago I've came across Groovy - powerful language for JVM platform which combines the power of Java with abilities typical for scripting languages (dynamic typing, metaprogramming).

Together with Groovy I've discovered spock framework (https://code.google.com/p/spock/) - specification framework for Groovy (of course you can test Java classes too!). But spock is not only test/specification framework - it also contains powerful mocking tools.

Even though spock is dedicated for Groovy there is no problem with using it for Java classes tests. In this post I'm going to describe how to configure Maven project to build and run spock specifications together with traditional JUnit tests.


Firstly, we need to prepare pom.xml and add necessary dependencies and plugins.

Two obligatory libraries are:
<dependency>
<groupid>org.spockframework</groupId>
<artifactid>spock-core</artifactId>
<version>0.7-groovy-2.0</version>
<scope>test</scope>
</dependency>
<dependency>
<groupid>org.codehaus.groovy</groupId>
<artifactid>groovy-all</artifactId>
<version>${groovy.version}</version>
<scope>test</scope>
</dependency>
Where groovy.version is property defined in pom.xml for more convenient use and easy version change, just like this:
<properties>
<gmaven-plugin.version>1.4</gmaven-plugin.version>
<groovy.version>2.1.5</groovy.version>
</properties>

I've added property for gmaven-plugin version for the same reason ;)

Besides these two dependencies, we can use few additional ones providing extra functionality:
  • cglib - for class mocking
  • objenesis - enables mocking classes without default constructor
To add them to the project put these lines in <dependencies> section of pom.xml:
<dependency>
<groupid>cglib</groupId>
<artifactid>cglib-nodep</artifactId>
<version>3.0</version>
<scope>test</scope>
</dependency>
<dependency>
<groupid>org.objenesis</groupId>
<artifactid>objenesis</artifactId>
<version>1.3</version>
<scope>test</scope>
</dependency>

And that's all for dependencies section. Now we will focus on plugins necessary to compile Groovy classes. We need to add gmaven-plugin with gmaven-runtime-2.0 dependency in plugins section:
<plugin>
<groupid>org.codehaus.gmaven</groupId>
<artifactid>gmaven-plugin</artifactId>
<version>${gmaven-plugin.version}</version>
<configuration>
<providerselection>2.0</providerSelection>
</configuration>
<executions>
<execution>
<goals>
<goal>compile</goal>
<goal>testCompile</goal>
</goals>
</execution>
</executions>
<dependencies>
<dependency>
<groupid>org.codehaus.gmaven.runtime</groupId>
<artifactid>gmaven-runtime-2.0</artifactId>
<version>${gmaven-plugin.version}</version>
<exclusions>
<exclusion>
<groupid>org.codehaus.groovy</groupId>
<artifactid>groovy-all</artifactId>
</exclusion>
</exclusions>
</dependency>
<dependency>
<groupid>org.codehaus.groovy</groupId>
<artifactid>groovy-all</artifactId>
<version>${groovy.version}</version>
</dependency>
</dependencies>
</plugin>

With these configuration we can use spock and write our first specifications. But there is one issue: default settings for maven-surefire plugin demand that test classes must end with "..Test" postfix, which is ok when we want to use such naming scheme for our spock tests. But if we want to name them like CommentSpec.groovy or whatever with "..Spec" ending (what in my opinion is much more readable) we need to make little change in surefire plugin configuration:
<plugin>
<groupid>org.apache.maven.plugins</groupId>
<artifactid>maven-surefire-plugin</artifactId>
<version>2.15</version>
<configuration>
<includes>
<include>**/*Test.java</include>
<include>**/*Spec.java</include>
</includes>
</configuration>
</plugin>

As you can see there is a little trick ;) We add include directive for standard Java JUnit test ending with "..Test" postfix, but there is also an entry for spock test ending with "..Spec". And there is a trick: we must write "**/*Spec.java", not "**/*Spec.groovy", otherwise Maven will not run spock tests (which is strange and I've spent some time to figure out why Maven can't run my specs).

Little update: instead of "*.java" postfix for both types of tests we can write "*.class" what is in my opinion more readable and clean:
<include>**/*Test.class</include>
<include>**/*Spec.class</include>
(thanks to Tomek Pęksa for pointing this out!)

With such configuration, we can write either traditional JUnit test and put them in src/test/java directory or groovy spock specifications and place them in src/test/groovy. And both will work together just fine :) In one of my next posts I'll write something about using spock and its mocking abilities in practice, so stay in tune.