Testing Kotlin with Spock Part 2 – Enum with instance method

The enum class with instance method in Kotlin is quite similar to its Java version, but they are look a bit different in the bytecode. Let’s see the difference by writing some tests using Spock.What do we want to test?Let’s see the code that we want to…

Testing Kotlin with Spock Part 2 – Enum instance method

The enum class with instance method in Kotlin is quite similar to its Java version, but they are look a bit different in the bytecode. Let’s see the difference by writing some tests using Spock.

What do we want to test?

Let’s see the code that we want to test:

enum class EnumWithInstanceMethod {
    PLUS {
        override fun sign(): String = "+"
    },
    MINUS {
        override fun sign(): String = "-"
    };

    abstract fun sign(): String
}

Obviously, it can be written in a better way (e. g. using enum instance variable), but this example shows the case we want to test in the simplest way.

How to test it with Spock?

The simplest test (that does not work)

First, we can write the test like we would do it with a Java enum:

def "should use enum method like in java"() {
    expect:
        EnumWithInstanceMethod.MINUS.sign() == '-'
}

The test fails:

Condition failed with Exception:

EnumWithInstanceMethod.MINUS.sign() == '-'
                             |
                             groovy.lang.MissingMethodException: No signature of method: static com.github.alien11689.testingkotlinwithspock.EnumWithInstanceMethod$MINUS.sign() is applicable for argument types: () values: []
                             Possible solutions: sign(), sign(), is(java.lang.Object), find(), with(groovy.lang.Closure), find(groovy.lang.Closure)


    at com.github.alien11689.testingkotlinwithspock.EnumWithInstanceMethodTest.should use enum method like in java(EnumWithInstanceMethodTest.groovy:11)
Caused by: groovy.lang.MissingMethodException: No signature of method: static com.github.alien11689.testingkotlinwithspock.EnumWithInstanceMethod$MINUS.sign() is applicable for argument types: () values: []
Possible solutions: sign(), sign(), is(java.lang.Object), find(), with(groovy.lang.Closure), find(groovy.lang.Closure)
    ... 1 more

Interesting… Why is Groovy telling us that we are trying to call a static method? Maybe we are not using the enum instance but something else?. Let’s create a test where we pass the enum instance to method:

static String consume(EnumWithInstanceMethod e) {
    return e.sign()
}
def "should pass enum as parameter"() {
    expect: consume(EnumWithInstanceMethod.MINUS) == '-'
}

Error message:

Condition failed with Exception:

consume(EnumWithInstanceMethod.MINUS) == '-'
|
groovy.lang.MissingMethodException: No signature of method: static com.github.alien11689.testingkotlinwithspock.EnumWithInstanceMethodTest.consume() is applicable for argument types: (java.lang.Class) values: [class com.github.alien11689.testingkotlinwithspock.EnumWithInstanceMethod$MINUS]
Possible solutions: consume(com.github.alien11689.testingkotlinwithspock.EnumWithInstanceMethod)


    at com.github.alien11689.testingkotlinwithspock.EnumWithInstanceMethodTest.should pass enum as parameter(EnumWithInstanceMethodTest.groovy:29)
Caused by: groovy.lang.MissingMethodException: No signature of method: static com.github.alien11689.testingkotlinwithspock.EnumWithInstanceMethodTest.consume() is applicable for argument types: (java.lang.Class) values: [class com.github.alien11689.testingkotlinwithspock.EnumWithInstanceMethod$MINUS]
Possible solutions: consume(com.github.alien11689.testingkotlinwithspock.EnumWithInstanceMethod)
    ... 1 more

Now we see that we passed the class com.github.alien11689.testingkotlinwithspock.EnumWithInstanceMethod$MINUS, not the enum instance.

But it works in Java…

Analogous code in JUnit works perfectly and the test passes:

@Test
public void shouldReturnSign() {
    assertEquals("-", EnumWithInstanceMethod.MINUS.sign());
}

Java can access Kotlin’s instance method without problems, so maybe something is wrong with Groovy…

But the Java enum with instance method, e. g.

public enum EnumWithInstanceMethodInJava {
    PLUS {
        public String sign() {
            return "+";
        }
    },
    MINUS {
        public String sign() {
            return "-";
        }
    };

    public abstract String sign();
}

works correctly in the Spock test:

def "should use enum method"() {
    expect:
        EnumWithInstanceMethodInJava.MINUS.sign() == '-'
}

What’s the difference?

We can spot the difference just by looking at the compiled classes:

$ tree build/classes/main/
build/classes/main/
└── com
    └── github
        └── alien11689
            └── testingkotlinwithspock
                ├── AdultValidator.class
                ├── EnumWithInstanceMethod.class
                ├── EnumWithInstanceMethodInJava$1.class
                ├── EnumWithInstanceMethodInJava$2.class
                ├── EnumWithInstanceMethodInJava.class
                ├── EnumWithInstanceMethod$MINUS.class
                ├── EnumWithInstanceMethod$PLUS.class
                ├── Error.class
                ├── Ok.class
                ├── ValidationStatus.class
                └── Validator.class

Java generates anonymous classes (EnumWithInstanceMethodInJava$1 and EnumWithInstanceMethodInJava$2) for the enum instances, but Kotlin names those classes after the enum instances names (EnumWithInstanceMethod$MINUS and EnumWithInstanceMethod$PLUS).

How does it tie into the problem with Groovy? Groovy does not need the .class when accessing class in code, so when we try to access EnumWithInstanceMethod.MINUS, Groovy converts it to EnumWithInstanceMethod.MINUS.class, not the instance of the enum. The same problem does not occur in Java code since there is no EnumWithInstanceMethodInJava$MINUS class.

Solution

Knowing the difference, we can solve the problem of accessing Kotlin’s enum instance in our Groovy code.

The first solution is accessing the enum instance with valueOf method:

def "should use enum method working"() {
    expect:
        EnumWithInstanceMethod.valueOf('MINUS').sign() == '-'
}

 

The second way is to tell Groovy explicitly that we want to access the static field which is the instance of enum:

def "should use enum method"() {
    expect:
        EnumWithInstanceMethod.@MINUS.sign() == '-'
}

You can choose either solution depending on style of your code and your preferences.

Show me the code

Code is available here.

You May Also Like

Grails with Spock unit test + IntelliJ IDEA = No thread-bound request found

During my work with Grails project using Spock test in IntelliJ IDEA I've encountered this error:

java.lang.IllegalStateException: No thread-bound request found: Are you referring to request attributes outside of an actual web request, or processing a request outside of the originally receiving thread? If you are actually operating within a web request and still receive this message, your code is probably running outside of DispatcherServlet/DispatcherPortlet: In this case, use RequestContextListener or RequestContextFilter to expose the current request.
at org.springframework.web.context.request.RequestContextHolder.currentRequestAttributes(RequestContextHolder.java:131)
at org.codehaus.groovy.grails.plugins.web.api.CommonWebApi.currentRequestAttributes(CommonWebApi.java:205)
at org.codehaus.groovy.grails.plugins.web.api.CommonWebApi.getParams(CommonWebApi.java:65)
... // and few more lines of stacktrace ;)

It occurred when I tried to debug one of test from IDEA level. What is interesting, this error does not happen when I'm running all test using grails test-app for instance.

So what was the issue? With little of reading and tip from Tomek Kalkosiński (http://refaktor.blogspot.com/) it turned out that our test was missing @TestFor annotation and adding it solved all problems.

This annotation, according to Grails docs (link), indicates Spock what class is being tested and implicitly creates field with given type in test class. It is somehow strange as problematic test had explicitly and "manually" created field with proper controller type. Maybe there is a problem with mocking servlet requests?

Clojure web development – state of the art

It’s now more than a year that I’m getting familiar with Clojure and the more I dive into it, the more it becomes the language. Once you defeat the “parentheses fear”, everything else just makes the difference: tooling, community, good engineering practices. So it’s now time for me to convince others. In this post I’ll try to walktrough a simple web application from scratch to show key tools and libraries used to develop with Clojure in late 2015.

Note for Clojurians: This material is rather elementary and may be useful for you if you already know Clojure a bit but never did anything bigger than hello world application.

Note for Java developers: This material shows how to replace Spring, Angular, grunt, live-reload with a bunch of Clojure tools and libraries and a bit of code.

The repo with final code and individual steps is here.

Bootstrap

I think all agreed that component is the industry standard for managing lifecycle of Clojure applications. If you are a Java developer you may think of it as a Spring (DI) replacement - you declare dependencies between “components” which are resolved on “system” startup. So you just say “my component needs a repository/database pool” and component library “injects” it for you.

To keep things simple I like to start with duct web app template. It’s a nice starter component application following the 12-factor philosophy. So let’s start with it:

lein new duct clojure-web-app +example

The +example parameter tells duct to create an example endpoint with HTTP routes - this would be helpful. To finish bootstraping run lein setup inside clojure-web-app directory.

Ok, let’s dive into the code. Component and injection related code should be in system.clj file:

(defn new-system [config]
  (let [config (meta-merge base-config config)]
    (-> (component/system-map
         :app  (handler-component (:app config))
         :http (jetty-server (:http config))
         :example (endpoint-component example-endpoint))
        (component/system-using
         {:http [:app]
          :app  [:example]
          :example []}))))

In the first section you instantiate components without dependencies, which are resolved in the second section. So in this example, “http” component (server) requires “app” (application abstraction), which in turn is injected with “example” (actual routes). If your component needs others, you just can get then by names (precisely: by Clojure keywords).

To start the system you must fire a REPL - interactive environment running within context of your application:

lein repl

After seeing prompt type (go). Application should start, you can visit http://localhost:3000 to see some example page.

A huge benefit of using component approach is that you get fully reloadable application. When you change literally anything - configuration, endpoints, implementation, you can just type (reset) in REPL and your application is up-to-date with the code. It’s a feature of the language, no JRebel, Spring-reloaded needed.

Adding REST endpoint

Ok, in the next step let’s add some basic REST endpoint returning JSON. We need to add 2 dependencies in project.clj file:

:dependencies
 ...
  [ring/ring-json "0.3.1"]
  [cheshire "5.1.1"]

Ring-json adds support for JSON for your routes (in ring it’s called middleware) and cheshire is Clojure JSON parser (like Jackson in Java). Modifying project dependencies if one of the few tasks that require restarting the REPL, so hit CTRL-C and type lein repl again.

To configure JSON middleware we have to add wrap-json-body and wrap-json-response just before wrap-defaults in system.clj:

(:require 
 ...
 [ring.middleware.json :refer [wrap-json-body wrap-json-response]])

(def base-config
   {:app {:middleware [[wrap-not-found :not-found]
                      [wrap-json-body {:keywords? true}]
                      [wrap-json-response]
                      [wrap-defaults :defaults]]

And finally, in endpoint/example.clj we must add some route with JSON response:

(:require 
 ...
 [ring.util.response :refer [response]]))

(defn example-endpoint [config]
  (routes
    (GET "/hello" [] (response {:hello "world"}))
    ...

Reload app with (reset) in REPL and test new route with curl:

curl -v http://localhost:3000/hello

< HTTP/1.1 200 OK
< Date: Tue, 15 Sep 2015 21:17:37 GMT
< Content-Type: application/json; charset=utf-8
< Set-Cookie: ring-session=37c337fb-6bbc-4e65-a060-1997718d03e0;Path=/;HttpOnly
< X-XSS-Protection: 1; mode=block
< X-Frame-Options: SAMEORIGIN
< X-Content-Type-Options: nosniff
< Content-Length: 151
* Server Jetty(9.2.10.v20150310) is not blacklisted
< Server: Jetty(9.2.10.v20150310)
<
* Connection #0 to host localhost left intact
{"hello": "world"}

It works! In case of any problems you can find working version in this commit.

Adding frontend with figwheel

Coding backend in Clojure is great, but what about the frontend? As you may already know, Clojure could be compiled not only to JVM bytecode, but also to Javascript. This may sound familiar if you used e.g. Coffescript. But ClojureScript philosophy is not only to provide some syntax sugar, but improve your development cycle with great tooling and fully interactive development. Let’s see how to achieve it.

The best way to introduce ClojureScript to a project is figweel. First let’s add fighweel plugin and configuration to project.clj:

:plugins
   ...
   [lein-figwheel "0.3.9"]

And cljsbuild configuration:

:cljsbuild
    {:builds [{:id "dev"
               :source-paths ["src-cljs"]
               :figwheel true
               :compiler {:main       "clojure-web-app.core"
                          :asset-path "js/out"
                          :output-to  "resources/public/js/clojure-web-app.js"
                          :output-dir "resources/public/js/out"}}]}

In short this tells ClojureScript compiler to take sources from src-cljs with figweel support and but resulting JavaScript into resources/public/js/clojure-web-app.js file. So we need to include this file in a simple HTML page:

<!DOCTYPE html>
<head>
</head>
<body>
  <div id="main">
  </div>
  <script src="js/clojure-web-app.js" type="text/javascript"></script>
</body>
</html>

To serve this static file we need to change some defaults and add corresponding route. In system.clj change api-defaults to site-defaults both in require section and base-config function. In example.clj add following route:

(GET "/" [] (io/resource "public/index.html")

Again (reset) in REPL window should reload everything.

But where is our ClojureScript source file? Let’s create file core.cljs in src-cljs/clojure-web-app directory:

(ns ^:figwheel-always clojure-web-app.core)

(enable-console-print!)

(println "hello from clojurescript")

Open another terminal and run lein fighweel. It should compile ClojureScript and print ‘Prompt will show when figwheel connects to your application’. Open http://localhost:3000. Fighweel window should prompt:

To quit, type: :cljs/quit
cljs.user=>

Type (js/alert "hello"). Boom! If everything worked you should see and alert in your browser. Open developers console in your browser. You should see hello from clojurescript printed on the console. Change it in core.cljs to (println "fighweel rocks") and save the file. Without reloading the page your should see updated message. Figweel rocks! Again, in case of any problems, refer to this commit.

In the next post I’ll show how to fetch data from MongoDB, serve it with REST to the broser and write ReactJs/Om components to render it. Stay tuned!