Eclipse ecosystem

Do you use Eclipse? Or perhaps you use other IDE but would like to try “the big E”? Well, that’s OK, and completely understandable, because Eclipse is actually a great, versatile tool. But Eclipse is not just an IDE, in fact it is a comp let, extensible platform. What’s even more important, there are tones of valuable Eclipse-related projects gathered around the platform.

Yes, there are lots. Some are good, some are bad, but the usual, stock ones, signed by Eclipse, are worth taking a closer look. They’re not a mere innovation to the way we write code with an IDE. Those tools provide new ways to _create_ our code.

Consider Eclipse just a foundation for better things to come. Having Equinox OSGI container underneath it is fully modular ecosystem, that allows multiple bundles (in which we pack the plug-ins) coexist, and benefit from each others functionalities. Not dwelling on details of OSGI, it gives us a simple extensible platform to play with.

That in fact is great, because out of piles of Eclipse components you can build your own component base, and thus create a basis for your own solution. Since Eclipse is extensible you can extend the IDE’s workbench, by implementing plug-ins, or you can choose to implement a standalone application, that is based on RCP (Rich Client Platform) concept. And there are really big apps written with this in mind, like IBM’s Lotus Suite, totally based on Eclipse – and pretty neat also.

Well, that looks nice, but who writes so much code these days, who wants to create all the domain classes and GUI stuff by hand crafted api interfaces? Nope, one no longer have to go this path, just try Eclipse EMF sub-project, which offers model driven development practices, and whole bunch of code generation plug-ins will come to aid you. Using EMF you can create your domain model in just a few clicks, or import it from your existing java interfaces – actually you can use a couple more ways to do this. Having an EMF model you are just a few clicks from generating a working, domain editor, that would serve as a sandbox for your ideas about the domain you’re implementing, or it can be used right away in your new shiny web application.

Another few clicks and you get free model persistence with Hibernate, or other ORM framework. And this really works.

Since it would be nice to present things to end users you could generate some basic graphic editor, of course Eclipse supports that. But who uses thick clients today? Be serious, right? If you want something web-enabled, you don’t have to move your skills from the Eclipse ecosystem, just try out Eclipse RAP and have your Eclipse application in your browser via some serious Javascript voodoo magic – like on-the-fly converters. Of course other popular frameworks are allowed :)

What is most important here, is the constant use of the same tools, developing subsequent stages of the app don’t require you to switch skills. It’s Java all way up to this place.

And it gets more interesting when you dive deeper and deeper into this rich and flourishing community. Some examples of the vastness of the platform may be:

  • Swordfish – SOA solution, with BAM (Business Activity Monitoring) implemented
  • XText – enables you to write a simple (or not) DSLs for your apps
  • E4 – next gen Eclipse IDE, with many great ideas in it

Of course, the whole picture gets a bit blurry if you consider more technical details, there is not so much ease of use or scalability, etc, as you might expected. The whole Eclipse ecosystem may not be suitable for all your applications, but it may be for some. Or perhaps it is suitable for only a couple stages in your current project?

Let this be just a simple introduction to the rich Eclipse Community projects. With next iterations of this cycle I’d like to describe more in-depth details of the Eclipse framework, and various usage scenarios for Eclipse projects. Stay tuned!

You May Also Like

Clojure web development – state of the art

It’s now more than a year that I’m getting familiar with Clojure and the more I dive into it, the more it becomes the language. Once you defeat the “parentheses fear”, everything else just makes the difference: tooling, community, good engineering practices. So it’s now time for me to convince others. In this post I’ll try to walktrough a simple web application from scratch to show key tools and libraries used to develop with Clojure in late 2015.

Note for Clojurians: This material is rather elementary and may be useful for you if you already know Clojure a bit but never did anything bigger than hello world application.

Note for Java developers: This material shows how to replace Spring, Angular, grunt, live-reload with a bunch of Clojure tools and libraries and a bit of code.

The repo with final code and individual steps is here.

Bootstrap

I think all agreed that component is the industry standard for managing lifecycle of Clojure applications. If you are a Java developer you may think of it as a Spring (DI) replacement - you declare dependencies between “components” which are resolved on “system” startup. So you just say “my component needs a repository/database pool” and component library “injects” it for you.

To keep things simple I like to start with duct web app template. It’s a nice starter component application following the 12-factor philosophy. So let’s start with it:

lein new duct clojure-web-app +example

The +example parameter tells duct to create an example endpoint with HTTP routes - this would be helpful. To finish bootstraping run lein setup inside clojure-web-app directory.

Ok, let’s dive into the code. Component and injection related code should be in system.clj file:

(defn new-system [config]
  (let [config (meta-merge base-config config)]
    (-> (component/system-map
         :app  (handler-component (:app config))
         :http (jetty-server (:http config))
         :example (endpoint-component example-endpoint))
        (component/system-using
         {:http [:app]
          :app  [:example]
          :example []}))))

In the first section you instantiate components without dependencies, which are resolved in the second section. So in this example, “http” component (server) requires “app” (application abstraction), which in turn is injected with “example” (actual routes). If your component needs others, you just can get then by names (precisely: by Clojure keywords).

To start the system you must fire a REPL - interactive environment running within context of your application:

lein repl

After seeing prompt type (go). Application should start, you can visit http://localhost:3000 to see some example page.

A huge benefit of using component approach is that you get fully reloadable application. When you change literally anything - configuration, endpoints, implementation, you can just type (reset) in REPL and your application is up-to-date with the code. It’s a feature of the language, no JRebel, Spring-reloaded needed.

Adding REST endpoint

Ok, in the next step let’s add some basic REST endpoint returning JSON. We need to add 2 dependencies in project.clj file:

:dependencies
 ...
  [ring/ring-json "0.3.1"]
  [cheshire "5.1.1"]

Ring-json adds support for JSON for your routes (in ring it’s called middleware) and cheshire is Clojure JSON parser (like Jackson in Java). Modifying project dependencies if one of the few tasks that require restarting the REPL, so hit CTRL-C and type lein repl again.

To configure JSON middleware we have to add wrap-json-body and wrap-json-response just before wrap-defaults in system.clj:

(:require 
 ...
 [ring.middleware.json :refer [wrap-json-body wrap-json-response]])

(def base-config
   {:app {:middleware [[wrap-not-found :not-found]
                      [wrap-json-body {:keywords? true}]
                      [wrap-json-response]
                      [wrap-defaults :defaults]]

And finally, in endpoint/example.clj we must add some route with JSON response:

(:require 
 ...
 [ring.util.response :refer [response]]))

(defn example-endpoint [config]
  (routes
    (GET "/hello" [] (response {:hello "world"}))
    ...

Reload app with (reset) in REPL and test new route with curl:

curl -v http://localhost:3000/hello

< HTTP/1.1 200 OK
< Date: Tue, 15 Sep 2015 21:17:37 GMT
< Content-Type: application/json; charset=utf-8
< Set-Cookie: ring-session=37c337fb-6bbc-4e65-a060-1997718d03e0;Path=/;HttpOnly
< X-XSS-Protection: 1; mode=block
< X-Frame-Options: SAMEORIGIN
< X-Content-Type-Options: nosniff
< Content-Length: 151
* Server Jetty(9.2.10.v20150310) is not blacklisted
< Server: Jetty(9.2.10.v20150310)
<
* Connection #0 to host localhost left intact
{"hello": "world"}

It works! In case of any problems you can find working version in this commit.

Adding frontend with figwheel

Coding backend in Clojure is great, but what about the frontend? As you may already know, Clojure could be compiled not only to JVM bytecode, but also to Javascript. This may sound familiar if you used e.g. Coffescript. But ClojureScript philosophy is not only to provide some syntax sugar, but improve your development cycle with great tooling and fully interactive development. Let’s see how to achieve it.

The best way to introduce ClojureScript to a project is figweel. First let’s add fighweel plugin and configuration to project.clj:

:plugins
   ...
   [lein-figwheel "0.3.9"]

And cljsbuild configuration:

:cljsbuild
    {:builds [{:id "dev"
               :source-paths ["src-cljs"]
               :figwheel true
               :compiler {:main       "clojure-web-app.core"
                          :asset-path "js/out"
                          :output-to  "resources/public/js/clojure-web-app.js"
                          :output-dir "resources/public/js/out"}}]}

In short this tells ClojureScript compiler to take sources from src-cljs with figweel support and but resulting JavaScript into resources/public/js/clojure-web-app.js file. So we need to include this file in a simple HTML page:

<!DOCTYPE html>
<head>
</head>
<body>
  <div id="main">
  </div>
  <script src="js/clojure-web-app.js" type="text/javascript"></script>
</body>
</html>

To serve this static file we need to change some defaults and add corresponding route. In system.clj change api-defaults to site-defaults both in require section and base-config function. In example.clj add following route:

(GET "/" [] (io/resource "public/index.html")

Again (reset) in REPL window should reload everything.

But where is our ClojureScript source file? Let’s create file core.cljs in src-cljs/clojure-web-app directory:

(ns ^:figwheel-always clojure-web-app.core)

(enable-console-print!)

(println "hello from clojurescript")

Open another terminal and run lein fighweel. It should compile ClojureScript and print ‘Prompt will show when figwheel connects to your application’. Open http://localhost:3000. Fighweel window should prompt:

To quit, type: :cljs/quit
cljs.user=>

Type (js/alert "hello"). Boom! If everything worked you should see and alert in your browser. Open developers console in your browser. You should see hello from clojurescript printed on the console. Change it in core.cljs to (println "fighweel rocks") and save the file. Without reloading the page your should see updated message. Figweel rocks! Again, in case of any problems, refer to this commit.

In the next post I’ll show how to fetch data from MongoDB, serve it with REST to the broser and write ReactJs/Om components to render it. Stay tuned!

Sonar Gerrit Plugin Release

I am happy to announce a first release of my Sonar Gerrit plugin. This plugin reports Sonar violations on your patchsets to your Gerrit server. Sonar analyses full project, but only files included in patchset are commented on Gerrit. Please forward to project page for installation instructions. This plugin is intended to use with Gerrit Trigger plugin for Jenkins CI server. Together they provide a great tool for automatic static code analysis.I am happy to announce a first release of my Sonar Gerrit plugin. This plugin reports Sonar violations on your patchsets to your Gerrit server. Sonar analyses full project, but only files included in patchset are commented on Gerrit. Please forward to project page for installation instructions. This plugin is intended to use with Gerrit Trigger plugin for Jenkins CI server. Together they provide a great tool for automatic static code analysis.

Grails render as JSON catch

One of a reasons your controller doesn't render a proper response in JSON format might be wrong package name that you use. It is easy to overlook. Import are on top of a file, you look at your code and everything seems to be fine. Except response is still not in JSON format.

Consider this simple controller:

class RestJsonCatchController {
def grailsJson() {
render([first: 'foo', second: 5] as grails.converters.JSON)
}

def netSfJson() {
render([first: 'foo', second: 5] as net.sf.json.JSON)
}
}

And now, with finger crossed... We have a winner!

$ curl localhost:8080/example/restJsonCatch/grailsJson
{"first":"foo","second":5}
$ curl localhost:8080/example/restJsonCatch/netSfJson
{first=foo, second=5}

As you can see only grails.converters.JSON converts your response to JSON format. There is no such converter for net.sf.json.JSON, so Grails has no converter to apply and it renders Map normally.

Conclusion: always carefully look at your imports if you're working with JSON in Grails!

Edit: Burt suggested that this is a bug. I've submitted JIRA issue here: GRAILS-9622 render as class that is not a codec should throw exception