Karaf configuration as Groovy file

IntroductionBy deafault, Apache Karaf keeps configuration for bundles in the etc directory as flat properties files. We can override configuration for the storing mechanism by providing own implementation of the org.apache.felix.cm.PersistenceManager i…

Introduction

By deafault, Apache Karaf keeps configuration for bundles in the etc directory as flat properties files. We can override configuration for the storing mechanism by providing own implementation of the org.apache.felix.cm.PersistenceManager interface and use much more readable format for bundle properties, e. g. groovy config.

Turning off built-in Karaf persistence

As we can read in Karaf documentation:

Apache Karaf persists configuration using own persistence manager in case of when available persistence managers do not support that.

We will use our custom implementation of persistence, so Karaf persistence is not needed. We can turn it off by setting variable storage to an empty value:

$ cat etc/org.apache.karaf.config.cfg
storage=

This option is available since version 4.1.3 when this issue was resolved.

Registering custom Persistence Manager

First we have to create and register an OSGi service implementing org.apache.felix.cm.PersistenceManager. If we build and install the bundle with such service while Karaf is running (e.g. by putting jar in the deploy directory), then we should have at least two PersistenceManager services registered:

karaf@root()> ls org.apache.felix.cm.PersistenceManager
[org.apache.felix.cm.PersistenceManager]
----------------------------------------
 service.bundleid = 7
 service.description = Platform Filesystem Persistence Manager
 service.id = 14
 service.pid = org.apache.felix.cm.file.FilePersistenceManager
 service.ranking = -2147483648
 service.scope = singleton
 service.vendor = Apache Software Foundation
Provided by :
 Apache Felix Configuration Admin Service (7)
Used by:
 Apache Felix Configuration Admin Service (7)

[org.apache.felix.cm.PersistenceManager]
----------------------------------------
 osgi.service.blueprint.compname = groovyConfigPersistenceManager
 service.bundleid = 56
 service.id = 117
 service.pid = com.github.alien11689.osgi.util.groovyconfig.impl.GroovyConfigPersistenceManager
 service.ranking = 100
 service.scope = bundle
Provided by :
 groovy-config (56)
Used by:
 Apache Felix Configuration Admin Service (7)

Loaded configurations will be cached by configuration admin. We can use org.apache.felix.cm.NotCachablePersistenceManager interface if we want to implement custom caching strategy.

Creating a new properties file

Let’s create a new properties file in groovy, e.g:

$ cat etc/com.github.alien11689.test1.groovy
a = '7'
b {
    c {
        d = 1
        e = 2
    }
    z = 9
}
x.y.z='test'

If we search for properties with pid com.github.alien11689.test1, Karaf will find these.

karaf@root()> config:list '(service.pid=com.github.alien11689.test1)'
----------------------------------------------------------------
Pid:            com.github.alien11689.test1
BundleLocation: null
Properties:
   a = 7
   b.c.d = 1
   b.c.e = 2
   b.z = 9
   service.pid = com.github.alien11689.test1
   x.y.z = test

If we make any change to the file they won’t be mapped to properties, because there are no file watchers defined for it.

We could manage such properties using Karaf commands instead.

Managing configuration via Karaf commands

We can define a new pid using Karaf commands:

karaf@root()> config:property-set -p com.github.alien11689.test2 f.a 6
karaf@root()> config:property-set -p com.github.alien11689.test2 f.b 'test'

Since our PersistenceManager has higher service.ranking (100 > -2147483648), new pid will be stored as a groovy file:

$ cat etc/com.github.alien11689.test2.groovy
f {
    b='test'
    a='6'
}

We can also change/remove properties or remove the whole configuration pid using karaf commands and it will all be mapped to groovy configuration files.

Sources

Sources are available on github.

You May Also Like

Using WsLite in practice

TL;DR

There is a example working GitHub project which covers unit testing and request/response logging when using WsLite.

Why Groovy WsLite ?

I’m a huge fan of Groovy WsLite project for calling SOAP web services. Yes, in a real world you have to deal with those - big companies have huge amount of “legacy” code and are crazy about homogeneous architecture - only SOAP, Java, Oracle, AIX…

But I also never been comfortable with XFire/CXF approach of web service client code generation. I wrote a bit about other posibilites in this post. With JAXB you can also experience some freaky classloading errors - as Tomek described on his blog. In a large commercial project the “the less code the better” principle is significant. And the code generated from XSD could look kinda ugly - especially more complicated structures like sequences, choices, anys etc.

Using WsLite with native Groovy concepts like XmlSlurper could be a great choice. But since it’s a dynamic approach you have to be really careful - write good unit tests and log requests. Below are my few hints for using WsLite in practice.

Unit testing

Suppose you have some invocation of WsLite SOAPClient (original WsLite example):

def getMothersDay(long _year) {
    def response = client.send(SOAPAction: action) {
       body {
           GetMothersDay('xmlns':'http://www.27seconds.com/Holidays/US/Dates/') {
              year(_year)
           }
       }
    }
    response.GetMothersDayResponse.GetMothersDayResult.text()
}

How can the unit test like? My suggestion is to mock SOAPClient and write a simple helper to test that builded XML is correct. Example using great SpockFramework:

void setup() {
   client = Mock(SOAPClient)
   service.client = client
}

def "should pass year to GetMothersDay and return date"() {
  given:
      def year = 2013
  when:
      def date = service.getMothersDay(year)
  then:
      1 * client.send(_, _) >> { Map params, Closure requestBuilder ->
            Document doc = buildAndParseXml(requestBuilder)
            assertXpathEvaluatesTo("$year", '//ns:GetMothersDay/ns:year', doc)
            return mockResponse(Responses.mothersDay)
      }
      date == "2013-05-12T00:00:00"
}

This uses a real cool feature of Spock - even when you mock the invocation with “any mark” (_), you are able to get actual arguments. So we can build XML that would be passed to SOAPClient's send method and check that specific XPaths are correct:

void setup() {
    engine = XMLUnit.newXpathEngine()
    engine.setNamespaceContext(new SimpleNamespaceContext(namespaces()))
}

protected Document buildAndParseXml(Closure xmlBuilder) {
    def writer = new StringWriter()
    def builder = new MarkupBuilder(writer)
    builder.xml(xmlBuilder)
    return XMLUnit.buildControlDocument(writer.toString())
}

protected void assertXpathEvaluatesTo(String expectedValue,
                                      String xpathExpression, Document doc) throws XpathException {
    Assert.assertEquals(expectedValue,
            engine.evaluate(xpathExpression, doc))
}

protected Map namespaces() {
    return [ns: 'http://www.27seconds.com/Holidays/US/Dates/']
}

The XMLUnit library is used just for XpathEngine, but it is much more powerful for comparing XML documents. The NamespaceContext is needed to use correct prefixes (e.g. ns:GetMothersDay) in your Xpath expressions.

Finally - the mock returns SOAPResponse instance filled with envelope parsed from some constant XML:

protected SOAPResponse mockResponse(String resp) {
    def envelope = new XmlSlurper().parseText(resp)
    new SOAPResponse(envelope: envelope)
}

Request and response logging

The WsLite itself doesn’t use any logging framework. We usually handle it by adding own sendWithLogging method:

private SOAPResponse sendWithLogging(String action, Closure cl) {
    SOAPResponse response = client.send(SOAPAction: action, cl)
    log(response?.httpRequest, response?.httpResponse)
    return response
}

private void log(HTTPRequest request, HTTPResponse response) {
    log.debug("HTTPRequest $request with content:\n${request?.contentAsString}")
    log.debug("HTTPResponse $response with content:\n${response?.contentAsString}")
}

This logs the actual request and response send through SOAPClient. But it logs only when invocation is successful and errors are much more interesting… So here goes withExceptionHandler method:

private SOAPResponse withExceptionHandler(Closure cl) {
    try {
        cl.call()
    } catch (SOAPFaultException soapEx) {
        log(soapEx.httpRequest, soapEx.httpResponse)
        def message = soapEx.hasFault() ? soapEx.fault.text() : soapEx.message
        throw new InfrastructureException(message)
    } catch (HTTPClientException httpEx) {
        log(httpEx.request, httpEx.response)
        throw new InfrastructureException(httpEx.message)
    }
}
def send(String action, Closure cl) {
    withExceptionHandler {
        sendWithLogging(action, cl)
    }
}

XmlSlurper gotchas

Working with XML document with XmlSlurper is generally great fun, but is some cases could introduce some problems. A trivial example is parsing an id with a number to Long value:

def id = Long.valueOf(edit.'@id' as String)

The Attribute class (which edit.'@id' evaluates to) can be converted to String using as operator, but converting to Long requires using valueOf.

The second example is a bit more complicated. Consider following XML fragment:

<edit id="3">
   <params>
      <param value="label1" name="label"/>
      <param value="2" name="param2"/>
   </params>
   <value>123</value>
</edit>
<edit id="6">
   <params>
      <param value="label2" name="label"/>
      <param value="2" name="param2"/>
   </params>
   <value>456</value>
</edit>

We want to find id of edit whose label is label1. The simplest solution seems to be:

def param = doc.edit.params.param.find { it['@value'] == 'label1' }
def edit = params.parent().parent()

But it doesn’t work! The parent method returns multiple edits, not only the one that is parent of given param

Here’s the correct solution:

doc.edit.find { edit ->
    edit.params.param.find { it['@value'] == 'label1' }
}

Example

The example working project covering those hints could be found on GitHub.

Oracle SQL Developer dla MSSQL

Ostatnio poznałem ciekawe narzędzie do manipulacji schematami bazy danych. Oracle SQL Developer się nazywa i nie służy tylko do baz Oracle. Ponieważ pracuję obecnie przy projekcie opartym o MS SQL, to potrzebowałem możliwości połączenia z M...Ostatnio poznałem ciekawe narzędzie do manipulacji schematami bazy danych. Oracle SQL Developer się nazywa i nie służy tylko do baz Oracle. Ponieważ pracuję obecnie przy projekcie opartym o MS SQL, to potrzebowałem możliwości połączenia z M...