Spring autowire with qualifiers

Introduction

Autowired is great annotation, which by default inject beans by type to annotated element (constructor, setter or field). But how to use it, when there is more than one bean of requested type.

Autowired with one bean

Suppose we will work with small interface:

interface IHeaderPrinter {
String printHeader(String header)
}

When we have only one bean implementing IHeaderPrinter:

@Component
class HtmlHeaderPrinter implements IHeaderPrinter{
@Override
String printHeader(String header) {
return "<h1>$header</h1>"
}
}

then everything works great and test passes.

@Autowired
IHeaderPrinter headerPrinter

@Test
void shouldPrintHtmlHeader() {
assert headerPrinter.printHeader('myTitle') == '<h1>myTitle</h1>'
}

Two implementations

But what will happen, if we add another implementation of IHeaderPrinter, e. g. MarkdownHeaderPrinter?

@Component
class MarkdownHeaderPrinter implements IHeaderPrinter {
@Override
String printHeader(String header) {
return "# $header"
}
}

Now out test with fail with exception:

Error creating bean with name 'com.blogspot.przybyszd.spring.autowire.SpringAutowireWithQualifiersApplicationTests': Injection of autowired dependencies failed; nested exception is org.springframework.beans.factory.BeanCreationException: Could not autowire field: private com.blogspot.przybyszd.spring.autowire.IHeaderPrinter com.blogspot.przybyszd.spring.autowire.SpringAutowireWithQualifiersApplicationTests.headerPrinter; nested exception is org.springframework.beans.factory.NoUniqueBeanDefinitionException: No qualifying bean of type [com.blogspot.przybyszd.spring.autowire.IHeaderPrinter] is defined: expected single matching bean but found 2: markdownHeaderPrinter,htmlHeaderPrinter

We have to decide which implementation we want to use in our test, so …

Two implementations with Qualifier

Each bean is registered with name equal its class. For example HtmlHeaderPrinter is named htmlHeaderPrinter. The name is also its qualifier. We have to tell Autowired, that it should inject htmlHeaderPrinter:

@Autowired
@Qualifier('htmlHeaderPrinter')
IHeaderPrinter headerPrinter

Now our test passes again.

Two implementations qualified by field name

If field is names like implementing class (for example htmlHeaderPrinter), then this class implementation will be injected:

@Autowired
IHeaderPrinter htmlHeaderPrinter

And test passes:

@Test
void shouldPrintHtmlHeader() {
assert htmlHeaderPrinter.printHeader('myTitle') == '<h1>myTitle</h1>'
}

Thanks to @marcinjasion.

Two implementation with Primary

We often have one implementation which we almost always want to inject, so do we still have to put Qualifier with its name wherever we want to use it? No.

We could mark one implementation as Primary and this bean will be wired by default (unless we explicit give another Qualifier to use injection point):

@Component
@Primary
class HtmlHeaderPrinter implements IHeaderPrinter{
// ...
}
@Autowired
IHeaderPrinter headerPrinter

Summary

Autowired annotation allows us to inject dependencies to beans. It works great without additional configuration, when each bean could be uniquely find by type. When we have more than one bean, that could be injected, we have to use Qualifier or Primary annotation to help it find desired implementation.

Source code is available here.

You May Also Like

Clojure web development – state of the art

It’s now more than a year that I’m getting familiar with Clojure and the more I dive into it, the more it becomes the language. Once you defeat the “parentheses fear”, everything else just makes the difference: tooling, community, good engineering practices. So it’s now time for me to convince others. In this post I’ll try to walktrough a simple web application from scratch to show key tools and libraries used to develop with Clojure in late 2015.

Note for Clojurians: This material is rather elementary and may be useful for you if you already know Clojure a bit but never did anything bigger than hello world application.

Note for Java developers: This material shows how to replace Spring, Angular, grunt, live-reload with a bunch of Clojure tools and libraries and a bit of code.

The repo with final code and individual steps is here.

Bootstrap

I think all agreed that component is the industry standard for managing lifecycle of Clojure applications. If you are a Java developer you may think of it as a Spring (DI) replacement - you declare dependencies between “components” which are resolved on “system” startup. So you just say “my component needs a repository/database pool” and component library “injects” it for you.

To keep things simple I like to start with duct web app template. It’s a nice starter component application following the 12-factor philosophy. So let’s start with it:

lein new duct clojure-web-app +example

The +example parameter tells duct to create an example endpoint with HTTP routes - this would be helpful. To finish bootstraping run lein setup inside clojure-web-app directory.

Ok, let’s dive into the code. Component and injection related code should be in system.clj file:

(defn new-system [config]
  (let [config (meta-merge base-config config)]
    (-> (component/system-map
         :app  (handler-component (:app config))
         :http (jetty-server (:http config))
         :example (endpoint-component example-endpoint))
        (component/system-using
         {:http [:app]
          :app  [:example]
          :example []}))))

In the first section you instantiate components without dependencies, which are resolved in the second section. So in this example, “http” component (server) requires “app” (application abstraction), which in turn is injected with “example” (actual routes). If your component needs others, you just can get then by names (precisely: by Clojure keywords).

To start the system you must fire a REPL - interactive environment running within context of your application:

lein repl

After seeing prompt type (go). Application should start, you can visit http://localhost:3000 to see some example page.

A huge benefit of using component approach is that you get fully reloadable application. When you change literally anything - configuration, endpoints, implementation, you can just type (reset) in REPL and your application is up-to-date with the code. It’s a feature of the language, no JRebel, Spring-reloaded needed.

Adding REST endpoint

Ok, in the next step let’s add some basic REST endpoint returning JSON. We need to add 2 dependencies in project.clj file:

:dependencies
 ...
  [ring/ring-json "0.3.1"]
  [cheshire "5.1.1"]

Ring-json adds support for JSON for your routes (in ring it’s called middleware) and cheshire is Clojure JSON parser (like Jackson in Java). Modifying project dependencies if one of the few tasks that require restarting the REPL, so hit CTRL-C and type lein repl again.

To configure JSON middleware we have to add wrap-json-body and wrap-json-response just before wrap-defaults in system.clj:

(:require 
 ...
 [ring.middleware.json :refer [wrap-json-body wrap-json-response]])

(def base-config
   {:app {:middleware [[wrap-not-found :not-found]
                      [wrap-json-body {:keywords? true}]
                      [wrap-json-response]
                      [wrap-defaults :defaults]]

And finally, in endpoint/example.clj we must add some route with JSON response:

(:require 
 ...
 [ring.util.response :refer [response]]))

(defn example-endpoint [config]
  (routes
    (GET "/hello" [] (response {:hello "world"}))
    ...

Reload app with (reset) in REPL and test new route with curl:

curl -v http://localhost:3000/hello

< HTTP/1.1 200 OK
< Date: Tue, 15 Sep 2015 21:17:37 GMT
< Content-Type: application/json; charset=utf-8
< Set-Cookie: ring-session=37c337fb-6bbc-4e65-a060-1997718d03e0;Path=/;HttpOnly
< X-XSS-Protection: 1; mode=block
< X-Frame-Options: SAMEORIGIN
< X-Content-Type-Options: nosniff
< Content-Length: 151
* Server Jetty(9.2.10.v20150310) is not blacklisted
< Server: Jetty(9.2.10.v20150310)
<
* Connection #0 to host localhost left intact
{"hello": "world"}

It works! In case of any problems you can find working version in this commit.

Adding frontend with figwheel

Coding backend in Clojure is great, but what about the frontend? As you may already know, Clojure could be compiled not only to JVM bytecode, but also to Javascript. This may sound familiar if you used e.g. Coffescript. But ClojureScript philosophy is not only to provide some syntax sugar, but improve your development cycle with great tooling and fully interactive development. Let’s see how to achieve it.

The best way to introduce ClojureScript to a project is figweel. First let’s add fighweel plugin and configuration to project.clj:

:plugins
   ...
   [lein-figwheel "0.3.9"]

And cljsbuild configuration:

:cljsbuild
    {:builds [{:id "dev"
               :source-paths ["src-cljs"]
               :figwheel true
               :compiler {:main       "clojure-web-app.core"
                          :asset-path "js/out"
                          :output-to  "resources/public/js/clojure-web-app.js"
                          :output-dir "resources/public/js/out"}}]}

In short this tells ClojureScript compiler to take sources from src-cljs with figweel support and but resulting JavaScript into resources/public/js/clojure-web-app.js file. So we need to include this file in a simple HTML page:

<!DOCTYPE html>
<head>
</head>
<body>
  <div id="main">
  </div>
  <script src="js/clojure-web-app.js" type="text/javascript"></script>
</body>
</html>

To serve this static file we need to change some defaults and add corresponding route. In system.clj change api-defaults to site-defaults both in require section and base-config function. In example.clj add following route:

(GET "/" [] (io/resource "public/index.html")

Again (reset) in REPL window should reload everything.

But where is our ClojureScript source file? Let’s create file core.cljs in src-cljs/clojure-web-app directory:

(ns ^:figwheel-always clojure-web-app.core)

(enable-console-print!)

(println "hello from clojurescript")

Open another terminal and run lein fighweel. It should compile ClojureScript and print ‘Prompt will show when figwheel connects to your application’. Open http://localhost:3000. Fighweel window should prompt:

To quit, type: :cljs/quit
cljs.user=>

Type (js/alert "hello"). Boom! If everything worked you should see and alert in your browser. Open developers console in your browser. You should see hello from clojurescript printed on the console. Change it in core.cljs to (println "fighweel rocks") and save the file. Without reloading the page your should see updated message. Figweel rocks! Again, in case of any problems, refer to this commit.

In the next post I’ll show how to fetch data from MongoDB, serve it with REST to the broser and write ReactJs/Om components to render it. Stay tuned!

Wicket form submit not safe for redirecting to intercept page

The problem When you have a form, that anybody can see, but only logged on users can POST, you may want to redirect the user to the login page, and back to the form after login Using wicket 1.3/1.4, if you do that using redirectToInterceptPage(loginP...The problem When you have a form, that anybody can see, but only logged on users can POST, you may want to redirect the user to the login page, and back to the form after login Using wicket 1.3/1.4, if you do that using redirectToInterceptPage(loginP...