Spring autowire with qualifiers

Introduction

Autowired is great annotation, which by default inject beans by type to annotated element (constructor, setter or field). But how to use it, when there is more than one bean of requested type.

Autowired with one bean

Suppose we will work with small interface:

interface IHeaderPrinter {
String printHeader(String header)
}

When we have only one bean implementing IHeaderPrinter:

@Component
class HtmlHeaderPrinter implements IHeaderPrinter{
@Override
String printHeader(String header) {
return "<h1>$header</h1>"
}
}

then everything works great and test passes.

@Autowired
IHeaderPrinter headerPrinter

@Test
void shouldPrintHtmlHeader() {
assert headerPrinter.printHeader('myTitle') == '<h1>myTitle</h1>'
}

Two implementations

But what will happen, if we add another implementation of IHeaderPrinter, e. g. MarkdownHeaderPrinter?

@Component
class MarkdownHeaderPrinter implements IHeaderPrinter {
@Override
String printHeader(String header) {
return "# $header"
}
}

Now out test with fail with exception:

Error creating bean with name 'com.blogspot.przybyszd.spring.autowire.SpringAutowireWithQualifiersApplicationTests': Injection of autowired dependencies failed; nested exception is org.springframework.beans.factory.BeanCreationException: Could not autowire field: private com.blogspot.przybyszd.spring.autowire.IHeaderPrinter com.blogspot.przybyszd.spring.autowire.SpringAutowireWithQualifiersApplicationTests.headerPrinter; nested exception is org.springframework.beans.factory.NoUniqueBeanDefinitionException: No qualifying bean of type [com.blogspot.przybyszd.spring.autowire.IHeaderPrinter] is defined: expected single matching bean but found 2: markdownHeaderPrinter,htmlHeaderPrinter

We have to decide which implementation we want to use in our test, so …

Two implementations with Qualifier

Each bean is registered with name equal its class. For example HtmlHeaderPrinter is named htmlHeaderPrinter. The name is also its qualifier. We have to tell Autowired, that it should inject htmlHeaderPrinter:

@Autowired
@Qualifier('htmlHeaderPrinter')
IHeaderPrinter headerPrinter

Now our test passes again.

Two implementations qualified by field name

If field is names like implementing class (for example htmlHeaderPrinter), then this class implementation will be injected:

@Autowired
IHeaderPrinter htmlHeaderPrinter

And test passes:

@Test
void shouldPrintHtmlHeader() {
assert htmlHeaderPrinter.printHeader('myTitle') == '<h1>myTitle</h1>'
}

Thanks to @marcinjasion.

Two implementation with Primary

We often have one implementation which we almost always want to inject, so do we still have to put Qualifier with its name wherever we want to use it? No.

We could mark one implementation as Primary and this bean will be wired by default (unless we explicit give another Qualifier to use injection point):

@Component
@Primary
class HtmlHeaderPrinter implements IHeaderPrinter{
// ...
}
@Autowired
IHeaderPrinter headerPrinter

Summary

Autowired annotation allows us to inject dependencies to beans. It works great without additional configuration, when each bean could be uniquely find by type. When we have more than one bean, that could be injected, we have to use Qualifier or Primary annotation to help it find desired implementation.

Source code is available here.

You May Also Like

Control your bandwidth using ntop

I was looking for tool which could help me check who is using my bandwidth. Here are requirements which I want from this kind of tool:local hosts bandwidth distribution - it is helpful when you are loosing your bandwidth and don't know who abuse it in ...

Using WsLite in practice

TL;DR

There is a example working GitHub project which covers unit testing and request/response logging when using WsLite.

Why Groovy WsLite ?

I’m a huge fan of Groovy WsLite project for calling SOAP web services. Yes, in a real world you have to deal with those - big companies have huge amount of “legacy” code and are crazy about homogeneous architecture - only SOAP, Java, Oracle, AIX…

But I also never been comfortable with XFire/CXF approach of web service client code generation. I wrote a bit about other posibilites in this post. With JAXB you can also experience some freaky classloading errors - as Tomek described on his blog. In a large commercial project the “the less code the better” principle is significant. And the code generated from XSD could look kinda ugly - especially more complicated structures like sequences, choices, anys etc.

Using WsLite with native Groovy concepts like XmlSlurper could be a great choice. But since it’s a dynamic approach you have to be really careful - write good unit tests and log requests. Below are my few hints for using WsLite in practice.

Unit testing

Suppose you have some invocation of WsLite SOAPClient (original WsLite example):

def getMothersDay(long _year) {
    def response = client.send(SOAPAction: action) {
       body {
           GetMothersDay('xmlns':'http://www.27seconds.com/Holidays/US/Dates/') {
              year(_year)
           }
       }
    }
    response.GetMothersDayResponse.GetMothersDayResult.text()
}

How can the unit test like? My suggestion is to mock SOAPClient and write a simple helper to test that builded XML is correct. Example using great SpockFramework:

void setup() {
   client = Mock(SOAPClient)
   service.client = client
}

def "should pass year to GetMothersDay and return date"() {
  given:
      def year = 2013
  when:
      def date = service.getMothersDay(year)
  then:
      1 * client.send(_, _) >> { Map params, Closure requestBuilder ->
            Document doc = buildAndParseXml(requestBuilder)
            assertXpathEvaluatesTo("$year", '//ns:GetMothersDay/ns:year', doc)
            return mockResponse(Responses.mothersDay)
      }
      date == "2013-05-12T00:00:00"
}

This uses a real cool feature of Spock - even when you mock the invocation with “any mark” (_), you are able to get actual arguments. So we can build XML that would be passed to SOAPClient's send method and check that specific XPaths are correct:

void setup() {
    engine = XMLUnit.newXpathEngine()
    engine.setNamespaceContext(new SimpleNamespaceContext(namespaces()))
}

protected Document buildAndParseXml(Closure xmlBuilder) {
    def writer = new StringWriter()
    def builder = new MarkupBuilder(writer)
    builder.xml(xmlBuilder)
    return XMLUnit.buildControlDocument(writer.toString())
}

protected void assertXpathEvaluatesTo(String expectedValue,
                                      String xpathExpression, Document doc) throws XpathException {
    Assert.assertEquals(expectedValue,
            engine.evaluate(xpathExpression, doc))
}

protected Map namespaces() {
    return [ns: 'http://www.27seconds.com/Holidays/US/Dates/']
}

The XMLUnit library is used just for XpathEngine, but it is much more powerful for comparing XML documents. The NamespaceContext is needed to use correct prefixes (e.g. ns:GetMothersDay) in your Xpath expressions.

Finally - the mock returns SOAPResponse instance filled with envelope parsed from some constant XML:

protected SOAPResponse mockResponse(String resp) {
    def envelope = new XmlSlurper().parseText(resp)
    new SOAPResponse(envelope: envelope)
}

Request and response logging

The WsLite itself doesn’t use any logging framework. We usually handle it by adding own sendWithLogging method:

private SOAPResponse sendWithLogging(String action, Closure cl) {
    SOAPResponse response = client.send(SOAPAction: action, cl)
    log(response?.httpRequest, response?.httpResponse)
    return response
}

private void log(HTTPRequest request, HTTPResponse response) {
    log.debug("HTTPRequest $request with content:\n${request?.contentAsString}")
    log.debug("HTTPResponse $response with content:\n${response?.contentAsString}")
}

This logs the actual request and response send through SOAPClient. But it logs only when invocation is successful and errors are much more interesting… So here goes withExceptionHandler method:

private SOAPResponse withExceptionHandler(Closure cl) {
    try {
        cl.call()
    } catch (SOAPFaultException soapEx) {
        log(soapEx.httpRequest, soapEx.httpResponse)
        def message = soapEx.hasFault() ? soapEx.fault.text() : soapEx.message
        throw new InfrastructureException(message)
    } catch (HTTPClientException httpEx) {
        log(httpEx.request, httpEx.response)
        throw new InfrastructureException(httpEx.message)
    }
}
def send(String action, Closure cl) {
    withExceptionHandler {
        sendWithLogging(action, cl)
    }
}

XmlSlurper gotchas

Working with XML document with XmlSlurper is generally great fun, but is some cases could introduce some problems. A trivial example is parsing an id with a number to Long value:

def id = Long.valueOf(edit.'@id' as String)

The Attribute class (which edit.'@id' evaluates to) can be converted to String using as operator, but converting to Long requires using valueOf.

The second example is a bit more complicated. Consider following XML fragment:

<edit id="3">
   <params>
      <param value="label1" name="label"/>
      <param value="2" name="param2"/>
   </params>
   <value>123</value>
</edit>
<edit id="6">
   <params>
      <param value="label2" name="label"/>
      <param value="2" name="param2"/>
   </params>
   <value>456</value>
</edit>

We want to find id of edit whose label is label1. The simplest solution seems to be:

def param = doc.edit.params.param.find { it['@value'] == 'label1' }
def edit = params.parent().parent()

But it doesn’t work! The parent method returns multiple edits, not only the one that is parent of given param

Here’s the correct solution:

doc.edit.find { edit ->
    edit.params.param.find { it['@value'] == 'label1' }
}

Example

The example working project covering those hints could be found on GitHub.