The hidden benefit of writing short methods

A method should do only one thingQuoting Uncle Bob:The first rule of functions is that they should be small. The second rule of functions is that they should be smaller than that. Functions should not be 100 lines long. Functions should hardly ever be …

A method should do only one thing

Quoting Uncle Bob:

The first rule of functions is that they should be small. The second rule of functions is that they should be smaller than that. Functions should not be 100 lines long. Functions should hardly ever be 20 lines long.

From one of Martin Thompson’s presentations I have learned another – more easily available and intuitive – method of judging wether a method is small enough. What you are supposed to do is to physically cover the part of your screen on which the method is displayed with your hand. If you can’t do that, then it means that your method probably is not small enough and you should consider refactoring it.

The obvious advantages that you gain by following these rules are improved readability and maintainability of your code.

But there is one – less obvious – benefit of writing short methods

And that is that Java HotSpot VM’s JIT compiler uses a compilation technique which is called inlining. 
What the compiler does is it substitutes the body of a method into places where this method is invoked thus saving the cost of calling the method. 
Current default for HotSpot is set at 35 bytes, which means that the compiler will inline a method if it contains less than 35 bytes of bytecode.

How do I know the bytecode size of a given method?

The easiest way is to dump the class file containing your method with:
javap -c mypackage.MyClass

which returns bytecode of decompiled class and the size of each method (well actually the size is equal to the byte offset of the last instruction – you can read more about javap HERE).

You May Also Like

Phonegap / Cordova and cross domain ssl request problem on android.

In one app I have participated, there was a use case:
  • User fill up a form.
  • User submit the form.
  • System send data via https to server and show a response.
During development there wasn’t any problem, but when we were going to release production version then some unsuspected situation occurred. I prepare the production version accordingly with standard flow for Android environment:
  • ant release
  • align
  • signing
During conduct tests on that version, every time I try to submit the form, a connection error appear. In that situation, at the first you should check whitelist in cordova settings. Every URL you want to connect to, must be explicit type in:
res/xml/cordova.xml
If whitelist looks fine, the error is most likely caused by inner implementation of Android System. The Android WebView does not allow by default self-signed SSL certs. When app is debug-signed the SSL error is ignored, but if app is release-signed connection to untrusted services is blocked.



Workaround


You have to remember that secure connection to service with self-signed certificate is risky and unrecommended. But if you know what you are doing there is some workaround of the security problem. Behavior of method
CordovaWebViewClient.onReceivedSslError
must be changed.


Thus add new class extended CordovaWebViewClient and override ‘onReceivedSslError’. I strongly suggest to implement custom onReceiveSslError as secure as possible. I know that the problem occours when app try connect to example.domain.com and in spite of self signed certificate the domain is trusted, so only for that case the SslError is ignored.

public class MyWebViewClient extends CordovaWebViewClient {

   private static final String TAG = MyWebViewClient.class.getName();
   private static final String AVAILABLE_SLL_CN
= "example.domain.com";

   public MyWebViewClient(DroidGap ctx) {
       super(ctx);
   }

   @Override
   public void onReceivedSslError(WebView view,
SslErrorHandler handler,
android.net.http.SslError error) {

String errorSourceCName = error.getCertificate().
getIssuedTo().getCName();

       if( AVAILABLE_SLL_CN.equals(errorSourceCName) ) {
           Log.i(TAG, "Detect ssl connection error: " +
error.toString() +
„ so the error is ignored”);

           handler.proceed();
           return;
       }

       super.onReceivedSslError(view, handler, error);
   }
}
Next step is forcing yours app to  use custom implementation of WebViewClient.

public class Start extends DroidGap
{
   private static final String TAG = Start.class.getName();

   @Override
   public void onCreate(Bundle savedInstanceState)
   {
       super.onCreate(savedInstanceState);
       super.setIntegerProperty("splashscreen", R.drawable.splash);
       super.init();

       MyWebViewClient myWebViewClient = new MyWebViewClient(this);
       myWebViewClient.setWebView(this.appView);

       this.appView.setWebViewClient(myWebViewClient);
       
// yours code

   }
}
That is all ypu have to do if minSdk of yours app is greater or equals 8. In older version of Android there is no class
android.net.http.SslError
So in class MyCordovaWebViewClient class there are errors because compliator doesn’t see SslError class. Fortunately Android is(was) open source, so it is easy to find source of the class. There is no inpediments to ‘upgrade’ app and just add the file to project. I suggest to keep original packages. Thus after all operations the source tree looks like:

Class SslError placed in source tree. 
 Now the app created in release mode can connect via https to services with self-signed SSl certificates.