Implementing graph editor in JavaFX using MVC like approach

JavaFX has very good SVG support, embedded into language runtime. This makes it interesting choice for implementing custom UI components, which includes graph editors. In this article, I show how to create a simple graph editor, using MVC like approach and XML serialization via XStream. Example can be found here:

Launch JNLP,Browse on GitHub. Application brings graph editing functionality and maximum network flow computation using Ford Fulkerson algorithm Architecture is divided into Model, View and Controller. I made a slight upgrade to classic understanding of MVC. Classic View was responsible for displaying data only. Here, View consists also of UI parts, which include editable labels or combo boxes. Also, in Classic MVC, Model was responsible for refreshing View after Model changes by sending events to registered views. Here, Controller is responsible for refreshing View after Model changes and Model is just a plain POJO structure. I found such approach easier to implement. Model consists of Three Java classes (non JavaFX), which represent structure of a graph: MNode, MShape, MConnection. Separating those classes from UI gives benefit of easier serialization. In this case using XStream::toXML(model) does the job. Sample output is like this: View consists of corresponding UI implementations for Model elements, which are UINode, UILine, UIShape. Here, UINode is connected to MNode through model property. This is Bridge Pattern like approach for splitting class hierarchy of nodes into two. UINode classes refer to controller to perform user input actions, like delete node. Controller implements user action logic. This includes add, delete, and drag node. It is also responsible for refreshing UI after model changes. In order to do that easily, it uses Weak Hash Map, which keys are Model nodes and values are UI Nodes. Update function is like this: Because of Weak Hash Map, removing nodes from Model leads to removing corresponding UI elements from map automaticly. JavaFX SVG support and Layouts make it easy to render quite good looking nodes and connections.

You May Also Like

Private fields and methods are not private in groovy

I used to code in Java before I met groovy. Like most of you, groovy attracted me with many enhancements. This was to my surprise to discover that method visibility in groovy is handled different than Java!

Consider this example:

class Person {
private String name
public String surname

private Person() {}

private String signature() { "${name?.substring(0, 1)}. $surname" }

public String toString() { "I am $name $surname" }
}

How is this class interpreted with Java?

  1. Person has private constructor that cannot be accessed
  2. Field "name" is private and cannot be accessed
  3. Method signature() is private and cannot be accessed

Let's see how groovy interpretes Person:

public static void main(String[] args) {
def person = new Person() // constructor is private - compilation error in Java
println(person.toString())

person.@name = 'Mike' // access name field directly - compilation error in Java
println(person.toString())

person.name = 'John' // there is a setter generated by groovy
println(person.toString())

person.@surname = 'Foo' // access surname field directly
println(person.toString())

person.surname = 'Bar' // access auto-generated setter
println(person.toString())

println(person.signature()) // call private method - compilation error in Java
}

I was really astonished by its output:

I am null null
I am Mike null
I am John null
I am John Foo
I am John Bar
J. Bar

As you can see, groovy does not follow visibility directives at all! It treats them as non-existing. Code compiles and executes fine. It's contrary to Java. In Java this code has several errors, pointed out in comments.

I've searched a bit on this topic and it seems that this behaviour is known since version 1.1 and there is a bug report on that: http://jira.codehaus.org/browse/GROOVY-1875. It is not resolved even with groovy 2 release. As Tim Yates mentioned in this Stackoverflow question: "It's not clear if it is a bug or by design". Groovy treats visibility keywords as a hint for a programmer.

I need to keep that lesson in mind next time I want to make some field or method private!

Simple trick to DRY your Grails controller

Grails controllers are not very DRY. It's easy to find duplicated code fragments in default generated controller. Take a look at code sample below. It is duplicated four times in show, edit, update and delete actions:

class BookController {
def show() {
def bookInstance = Book.get(params.id)
if (!bookInstance) {
flash.message = message(code: 'default.not.found.message', args: [message(code: 'book.label', default: 'Book'), params.id])
redirect(action: "list")
return
}
[bookInstance: bookInstance]
}
}

Why is it duplicated?

There is a reason for that duplication, though. If you move this snippet to a method, it can redirect to "list" action, but it can't prevent controller from further execution. After you call redirect, response status changes to 302, but after method exits, controller still runs subsequent code.

Solution

At TouK we've implemented a simple trick to resolve that situation:

  1. wrap everything with a simple withStoppingOnRender method,
  2. whenever you want to render or redirect AND stop controller execution - throw EndRenderingException.

We call it Big Return - return from a method and return from a controller at once. Here is how it works:

class BookController {
def show(Long id) {
withStoppingOnRender {
Book bookInstance = Book.get(id)
validateInstanceExists(bookInstance)
[bookInstance: bookInstance]
}
}

protected Object withStoppingOnRender(Closure closure) {
try {
return closure.call()
} catch (EndRenderingException e) {}
}

private void validateInstanceExists(Book instance) {
if (!instance) {
flash.message = message(code: 'default.not.found.message', args: [message(code: 'book.label', default: 'Book'), params.id])
redirect(action: "list")
throw new EndRenderingException()
}
}
}

class EndRenderingException extends RuntimeException {}

Example usage

For simple CRUD controllers, you can use this solution and create some BaseController class for your controllers. We use withStoppingOnRender in every controller so code doesn't look like a spaghetti, we follow DRY principle and code is self-documented. Win-win-win! Here is a more complex example:

class DealerController {
@Transactional
def update() {
withStoppingOnRender {
Dealer dealerInstance = Dealer.get(params.id)
validateInstanceExists(dealerInstance)
validateAccountInExternalService(dealerInstance)
checkIfInstanceWasConcurrentlyModified(dealerInstance, params.version)
dealerInstance.properties = params
saveUpdatedInstance(dealerInstance)
redirectToAfterUpdate(dealerInstance)
}
}
}