Hamming Error Correction with Kotlin – part 1

Hamming code is one of the Computer Science/Telecommunication classics.

In this article, we’ll revisit the topic and implement a stateless Hamming(7,4) encoder using Kotlin.

Hamming Error Correction

Our communication channels and data storages are error-prone – bits can flip due to various things like electric/magnetic interferences, background radiation, or just because of the low quality of materials used.

Since the neutron flux is ~300 higher at around 10km altitude, a particular attention is necessary when dealing with systems operating at high altitudes – the case study of the Cassini-Huygens proves it – in space, a number of reported errors was over four times bigger than on earth, hence the need for efficient error correction.

Richard Hamming‘s Code is one of the solutions to the problem. It’s a perfect code (at least, according to Hamming’s definition) which can expose and correct errors in transmitted messages.

Simply put, it adds metadata to the message (in the form of parity bits) that can be used for validation and correction of errors in messages.

A Brief Explanation

I bet you already wondered what did (7,4) in “Hamming(7,4)” mean.

Simply put, N and M in “Hamming(N, M)” represent the block length and the message size – so, (7,4) means that it encodes four bits into seven bits by adding three additional parity bits – as simple as that.

This particular version can detect and correct single-bit errors, and detect (but not correct) double-bit errors.

In the Hamming’s codeword, parity bits always occupy all indexes that are powers of two (if we use 1-based-indexing).

So, if our initial message is 1111, the codeword will look somewhat like [][]1[]111 – with three parity bits for us to fill in.

If we want to calculate the n-th parity bit, we start on its position in a codeword, we take n elements, skip n elements, take n elements, skip n elements… and so on. If the number of taken ones is odd, we set the parity bit to one, otherwise zero.

In our case:

  • For the first parity bit, we check indexes 1,3,5,7       -> (1)()1()111
  • For the second parity bit, we check indexes 2,3,6,7 -> (1)(1)1()111
  • For the third parity bit, we check indexes 4,5,6,7     -> (1)(1)1(1)111

And that’s all – the codeword is 1111111.

In this case, it might be tempting to think that every sequence containing only ones will be encoded to another sequence comprising only ones… but that’s not the case… but every message containing only zeros will always be encoded to zeros exclusively.

Encoding

First things first, we can leverage Type Driven Development for making our life easier when working with Strings representing raw and encoded messages:

data class EncodedString(val value: String)

data class BinaryString(val value: String)

Using this approach, it’ll be slightly harder to mix them up.

We’ll need a method for calculating the encoded codeword size for a given message. In this case, we simply find the lowest number of parity pairs that can cover the given message:

fun codewordSize(msgLength: Int) = generateSequence(2) { it + 1 }
  .first { r -> msgLength + r + 1 <= (1 shl r) } + msgLength

Next, we’ll need a method for calculating parity and data bits at given indexes for a given message:

fun getParityBit(codeWordIndex: Int, msg: BinaryString) =
  parityIndicesSequence(codeWordIndex, codewordSize(msg.value.length))
    .map { getDataBit(it, msg).toInt() }
    .reduce { a, b -> a xor b }
    .toString()

fun getDataBit(ind: Int, input: BinaryString) = input
  .value[ind - Integer.toBinaryString(ind).length].toString()

Where parityIndicesSequence() is defined as:

fun parityIndicesSequence(start: Int, endEx: Int) = generateSequence(start) { it + 1 }
  .take(endEx - start)
  .filterIndexed { i, _ -> i % ((2 * (start + 1))) < start + 1 }
  .drop(1) // ignore the parity bit

Now, we can put it all together to form the actual solution, which simply is simply going through the whole codeword and filling it with parity bits and actual data:

override fun encode(input: BinaryString): EncodedString {
    fun toHammingCodeValue(it: Int, input: BinaryString) =
      when ((it + 1).isPowerOfTwo()) {
          true -> hammingHelper.getParityBit(it, input)
          false -> hammingHelper.getDataBit(it, input)
      }

    return hammingHelper.getHammingCodewordIndices(input.value.length)
      .map { toHammingCodeValue(it, input) }
      .joinToString("")
      .let(::EncodedString)
}

Note that isPowerOfTwo() is our custom extension function and is not available out-of-the-box in Kotlin:

internal fun Int.isPowerOfTwo() = this != 0 && this and this - 1 == 0

Inlined

The interesting thing is that the whole computation can be inlined to a single Goliath sequence:

override fun encode(input: BinaryString) = generateSequence(0) { it + 1 }
  .take(generateSequence(2) { it + 1 }
    .first { r -> input.value.length + r + 1 <= (1 shl r) } + input.value.length)
  .map {
      when ((it + 1).isPowerOfTwo()) {
          true -> generateSequence(it) { it + 1 }
            .take(generateSequence(2) { it + 1 }
              .first { r -> input.value.length + r + 1 <= (1 shl r) } + input.value.length - it)
            .filterIndexed { i, _ -> i % ((2 * (it + 1))) < it + 1 }
            .drop(1)
            .map {
                input
                  .value[it - Integer.toBinaryString(it).length].toString().toInt()
            }
            .reduce { a, b -> a xor b }
            .toString()
          false -> input
            .value[it - Integer.toBinaryString(it).length].toString()
      }
  }
  .joinToString("")
  .let(::EncodedString)

Not the most readable version, but interesting to have a look.

In Action

We can verify that the implementation works as expected by leveraging JUnit5 and Parameterized Tests:

@ParameterizedTest(name = "{0} should be encoded to {1}")
@CsvSource(
  "1,111",
  "01,10011",
  "11,01111",
  "1001000,00110010000",
  "1100001,10111001001",
  "1101101,11101010101",
  "1101001,01101011001",
  "1101110,01101010110",
  "1100111,01111001111",
  "0100000,10011000000",
  "1100011,11111000011",
  "1101111,10101011111",
  "1100100,11111001100",
  "1100101,00111000101",
  "10011010,011100101010")
fun shouldEncode(first: String, second: String) {
    assertThat(sut.encode(BinaryString(first)))
      .isEqualTo(EncodedString(second))
}

… and by using a home-made property testing:

@Test
@DisplayName("should always encode zeros to zeros")
fun shouldEncodeZeros() {
    generateSequence("0") { it + "0" }
      .take(1000)
      .map { sut.encode(BinaryString(it)).value }
      .forEach {
          assertThat(it).doesNotContain("1")
      }
}

Going Parallel

The most important property of this implementation is statelessness – it could be achieved by making sure that we’re using only pure functions and avoiding shared mutable state – all necessary data is always passed explicitly as input parameters and not held in any form of internal state.

Unfortunately, it results in some repetition and performance overhead that could’ve been avoided if we’re just modifying one mutable list and passing it around… but now we can utilize our resources wiser by parallelizing the whole operation – which should result in a performance improvement.

Without running the code that’s just wishful thinking so let’s do that.

We can parallelize the operation (naively) using Java 8’s parallel streams:

override fun encode(input: BinaryString) = hammingHelper.getHammingCodewordIndices(input.value.length)
  .toList().parallelStream()
  .map { toHammingCodeValue(it, input) }
  .reduce("") { t, u -> t + u }
  .let(::EncodedString)

To not give the sequential implementation an unfair advantage (no toList() conversion so far), we’ll need to change the implementation slightly:

override fun encode(input: BinaryString) = hammingHelper.getHammingCodewordIndices(input.value.length)
  .toList().stream() // to be fair.
  .map { toHammingCodeValue(it, input) }
  .reduce("") { t, u -> t + u }
  .let(::EncodedString)

And now, we can perform some benchmarking using JMH (message.size == 10_000):

Result "com.pivovarit.hamming.benchmarks.SimpleBenchmark.parallel":
 3.690 ±(99.9%) 0.018 ms/op [Average]
 (min, avg, max) = (3.524, 3.690, 3.974), stdev = 0.076
 CI (99.9%): [3.672, 3.708] (assumes normal distribution)

Result "com.pivovarit.hamming.benchmarks.SimpleBenchmark.sequential":
  10.877 ±(99.9%) 0.097 ms/op [Average]
  (min, avg, max) = (10.482, 10.877, 13.498), stdev = 0.410
  CI (99.9%): [10.780, 10.974] (assumes normal distribution)


# Run complete. Total time: 00:15:14

Benchmark                   Mode  Cnt   Score   Error  Units
SimpleBenchmark.parallel    avgt  200   3.690 ± 0.018  ms/op
SimpleBenchmark.sequential  avgt  200  10.877 ± 0.097  ms/op

As we can see, we can notice a major performance improvement in favor of the parallelized implementation – of course; results might drastically change because of various factors so do not think that we’ve found a silver bullet – they do not exist.

For example, here’re the results for encoding a very short message (message.size == 10)):

Benchmark                   Mode Cnt Score   Error Units
SimpleBenchmark.parallel    avgt 200 0.024 ± 0.001 ms/op
SimpleBenchmark.sequential  avgt 200 0.003 ± 0.001 ms/op

In this case, the overhead of splitting the operation among multiple threads makes the parallelized implementation perform eight times slower(sic!).

Here’s the full table for the reference:

Benchmark            (messageSize) Mode Cnt Score   Error    Units
Benchmark.parallel   10            avgt 200 0.022   ± 0.001  ms/op
Benchmark.sequential 10            avgt 200 0.003   ± 0.001  ms/op
 
Benchmark.parallel   100           avgt 200 0.038   ± 0.001  ms/op
Benchmark.sequential 100           avgt 200 0.031   ± 0.001  ms/op

Benchmark.parallel   1000          avgt 200 0.273   ± 0.011  ms/op 
Benchmark.sequential 1000          avgt 200 0.470   ± 0.008  ms/op

Benchmark.parallel   10000         avgt 200 3.731   ± 0.047  ms/op
Benchmark.sequential 10000         avgt 200 12.425  ± 0.336  ms/op

Conclusion

We saw how to implement a thread-safe Hamming(7,4) encoder using Kotlin and what parallelization can potentially give us.

In the second part of the article, we’ll implement a Hamming decoder and see how we can correct single-bit errors and detect double-bit ones.

Code snippets can be found on GitHub.

You May Also Like

33rd Degree day 1 review

33rd Degree is over. After the one last year, my expectations were very high, but Grzegorz Duda once again proved he's more than able to deliver. With up to five tracks (most of the time: four presentations + one workshop), and ~650 attendees,  there was a lot to see and a lot to do, thus everyone will probably have a little bit different story to tell. Here is mine.

Twitter: From Ruby on Rails to the JVM

Raffi Krikorian talking about Twitter and JVM
The conference started with  Raffi Krikorian from Twitter, talking about their use for JVM. Twitter was build with Ruby but with their performance management a lot of the backend was moved to Scala, Java and Closure. Raffi noted, that for Ruby programmers Scala was easier to grasp than Java, more natural, which is quite interesting considering how many PHP guys move to Ruby these days because of the same reasons. Perhaps the path of learning Jacek Laskowski once described (Java -> Groovy -> Scala/Closure) may be on par with PHP -> Ruby -> Scala. It definitely feels like Scala is the holy grail of languages these days.

Raffi also noted, that while JVM delivered speed and a concurrency model to Twitter stack, it wasn't enough, and they've build/customized their own Garbage Collector. My guess is that Scala/Closure could also be used because of a nice concurrency solutions (STM, immutables and so on).

Raffi pointed out, that with the scale of Twitter, you easily get 3 million hits per second, and that means you probably have 3 edge cases every second. I'd love to learn listen to lessons they've learned from this.

 

Complexity of Complexity


The second keynote of the first day, was Ken Sipe talking about complexity. He made a good point that there is a difference between complex and complicated, and that we often recognize things as complex only because we are less familiar with them. This goes more interesting the moment you realize that the shift in last 20 years of computer languages, from the "Less is more" paradigm (think Java, ASM) to "More is better" (Groovy/Scala/Closure), where you have more complex language, with more powerful and less verbose syntax, that is actually not more complicated, it just looks less familiar.

So while 10 years ago, I really liked Java as a general purpose language for it's small set of rules that could get you everywhere, it turned out that to do most of the real world stuff, a lot of code had to be written. The situation got better thanks to libraries/frameworks and so on, but it's just patching. New languages have a lot of stuff build into, which makes their set of rules and syntax much more complex, but once you get familiar, the real world usage is simple, faster, better, with less traps laying around, waiting for you to fall.

Ken also pointed out, that while Entity Service Bus looks really simple on diagrams, it's usually very difficult and complicated to use from the perspective of the programmer. And that's probably why it gets chosen so often - the guys selling/buying it, look no deeper than on the diagram.

 

Pointy haired bosses and pragmatic programmers: Facts and Fallacies of Software Development

Venkat Subramaniam with Dima
Dima got lucky. Or maybe not.

Venkat Subramaniam is the kind of a speaker that talk about very simple things in a way, which makes everyone either laugh or reflect. Yes, he is a showman, but hey, that's actually good, because even if you know the subject quite well, his talks are still very entertaining.
This talk was very generic (here's my thesis: the longer the title, the more generic the talk will be), interesting and fun, but at the end I'm unable to see anything new I'd have learned, apart from the distinction between Dynamic vs Static and Strong vs Weak typing, which I've seen the last year, but managed to forgot. This may be a very interesting argument for all those who are afraid of Groovy/Ruby, after bad experience with PHP or Perl.

Build Trust in Your Build to Deployment Flow!


Frederic Simon talked about DevOps and deployment, and that was a miss in my  schedule, because of two reasons. First, the talk was aimed at DevOps specifically, and while the subject is trendy lately, without big-scale problems, deployment is a process I usually set up and forget about. It just works, mostly because I only have to deal with one (current) project at a time. 
Not much love for Dart.
Second, while Frederic has a fabulous accent and a nice, loud voice, he tends to start each sentence loud and fade the sound at the end. This, together with mics failing him badly, made half of the presentation hard to grasp unless you were sitting in the first row.
I'm not saying the presentation was bad, far from it, it just clearly wasn't for me.
I've left a few minutes before the end, to see how many people came to Dart presentation by Mike West. I was kind of interested, since I'm following Warsaw Google Technology User Group and heard a few voices about why I should pay attentions to that new Google language. As you can see from the picture on the right, the majority tends to disagree with that opinion.

 

Non blocking, composable reactive web programming with Iteratees

Sadek Drobi's talk about Iteratees in Play 2.0 was very refreshing. Perhaps because I've never used Play before, but the presentation was flawless, with well explained problems, concepts and solutions.
Sadek started with a reflection on how much CPU we waste waiting for IO in web development, then moved to Play's Iteratees, to explain the concept and implementation, which while very different from the that overused Request/Servlet model, looked really nice and simple. I'm not sure though, how much the problem is present when you have a simple service, serving static content before your app server. Think apache (and faster) before tomcat. That won't fix the upload/download issue though, which is beautifully solved in Play 2.0

The Future of the Java Platform: Java SE 8 & Beyond


Simon Ritter is an intriguing fellow. If you take a glance at his work history (AT&T UNIX System Labs -> Novell -> Sun -> Oracle), you can easily see, he's a heavy weight player.
His presentation was rich in content, no corpo-bullshit. He started with a bit of history of JCP and how it looks like right now, then moved to the most interesting stuff, changes. Now I could give you a summary here, but there is really no point: you'd be much better taking look at the slides. There are only 48 of them, but everything is self-explanatory.
While I'm very disappointed with the speed of changes, especially when compared to the C# world, I'm glad with the direction and the fact that they finally want to BREAK the compatibility with the broken stuff (generics, etc.).  Moving to other languages I guess I won't be the one to scream "My god, finally!" somewhere in 2017, though. All the changes together look very promising, it's just that I'd like to have them like... now? Next year max, not near the heat death of the universe.

Simon also revealed one of the great mysteries of Java, to me:
The original idea behind JNI was to make it hard to write, to discourage people form using it.
On a side note, did you know Tegra3 has actually 5 cores? You use 4 of them, and then switch to the other one, when you battery gets low.

BOF: Spring and CloudFoundry


Having most of my folks moved to see "Typesafe stack 2.0" fabulously organized by Rafał Wasilewski and  Wojtek Erbetowski (with both of whom I had a pleasure to travel to the conference) and knowing it will be recorded, I've decided to see what Josh Long has to say about CloudFoundry, a subject I find very intriguing after the de facto fiasco of Google App Engine.

The audience was small but vibrant, mostly users of Amazon EC2, and while it turned out that Josh didn't have much, with pricing and details not yet public, the fact that Spring Source has already created their own competition (Could Foundry is both an Open Source app and a service), takes a lot from my anxiety.

For the review of the second day of the conference, go here.