Using Kotlin extensions in Groovy

Extensions in Kotlin and GroovyKotlin and Groovy have mechanisms for extending existing classes without using inheritance or decorators. In both languages, the mechanisms are called extension methods. Their source code looks different, but generated by…

Using Kotlin extensions in Groovy

Extensions in Kotlin and Groovy

Kotlin and Groovy have mechanisms for extending existing classes without using inheritance or decorators. In both languages, the mechanisms are called extension methods. Their source code looks different, but generated bytecode is quite similar. Thanks to that, Groovy is able to use Kotlin extensions just like its own.

Why would I want to use such extensions in Groovy? The main reason is that I want to test my extensions using the best testing framework available for the JVM – Spock Framework.

Code is available here.

Extensions in Kotlin

There are many types of extensions in Kotlin. I decided to focus only on extension functions and properties.

As an example, I extend the java.lang.String class. First, I create an extension function skipFirst, which skips first N characters:

fun String.skipFirst(n: Int) = if (length > n) this.substring(n) else ""

 

Next, I create an extension property answer, which is the Answer to the Ultimate Question of Life, the Universe, and Everything:

val String.answer
    get() = 42

Both extensions are declared in package com.github.alien11689.extensions, in file called StringExtensions. However, the generated class in target directory is named StringExtensionsKt and this is the name that must be used when accessing from other languages. Specific class name can be forced by annotation @file:JvmName.

Using Kotlin extensions in Groovy

There are two ways for using extensions in Groovy that are supported by good IDEs. First, you can declare scope where the extensions are available by use method:

def "should use extension method"() {
    expect:
        use(StringExtensionsKt) {
            input.skipFirst(n) == expected
        }
    where:
        input  | n | expected
        "abcd" | 3 | "d"
        "abcd" | 6 | ""
        ""     | 3 | ""
}

def "should use extension property"() {
    expect:
        use(StringExtensionsKt) {
            "abcd".answer == 42
        }
}

It is acceptable, but is not very convenient. The second and much better way is to use an extension module definition. The extension module is defined in file org.codehaus.groovy.runtime.ExtensionModule in directory src/main/resources/META-INF/services/. The same directory is monitored by ServiceLoader, but the file format is completely different:

moduleName=string-extension-module
moduleVersion=1.0.0
extensionClasses=com.github.alien11689.extensions.StringExtensionsKt

The tests look much better now:

def "should use extension method"() {
    expect:
        input.skipFirst(n) == expected
    where:
        input  | n | expected
        "abcd" | 3 | "d"
        "abcd" | 6 | ""
        ""     | 3 | ""
}

def "should use extension property"() {
    expect:
        "abcd".answer == 42
}
You May Also Like

Simple trick to DRY your Grails controller

Grails controllers are not very DRY. It's easy to find duplicated code fragments in default generated controller. Take a look at code sample below. It is duplicated four times in show, edit, update and delete actions:

class BookController {
def show() {
def bookInstance = Book.get(params.id)
if (!bookInstance) {
flash.message = message(code: 'default.not.found.message', args: [message(code: 'book.label', default: 'Book'), params.id])
redirect(action: "list")
return
}
[bookInstance: bookInstance]
}
}

Why is it duplicated?

There is a reason for that duplication, though. If you move this snippet to a method, it can redirect to "list" action, but it can't prevent controller from further execution. After you call redirect, response status changes to 302, but after method exits, controller still runs subsequent code.

Solution

At TouK we've implemented a simple trick to resolve that situation:

  1. wrap everything with a simple withStoppingOnRender method,
  2. whenever you want to render or redirect AND stop controller execution - throw EndRenderingException.

We call it Big Return - return from a method and return from a controller at once. Here is how it works:

class BookController {
def show(Long id) {
withStoppingOnRender {
Book bookInstance = Book.get(id)
validateInstanceExists(bookInstance)
[bookInstance: bookInstance]
}
}

protected Object withStoppingOnRender(Closure closure) {
try {
return closure.call()
} catch (EndRenderingException e) {}
}

private void validateInstanceExists(Book instance) {
if (!instance) {
flash.message = message(code: 'default.not.found.message', args: [message(code: 'book.label', default: 'Book'), params.id])
redirect(action: "list")
throw new EndRenderingException()
}
}
}

class EndRenderingException extends RuntimeException {}

Example usage

For simple CRUD controllers, you can use this solution and create some BaseController class for your controllers. We use withStoppingOnRender in every controller so code doesn't look like a spaghetti, we follow DRY principle and code is self-documented. Win-win-win! Here is a more complex example:

class DealerController {
@Transactional
def update() {
withStoppingOnRender {
Dealer dealerInstance = Dealer.get(params.id)
validateInstanceExists(dealerInstance)
validateAccountInExternalService(dealerInstance)
checkIfInstanceWasConcurrentlyModified(dealerInstance, params.version)
dealerInstance.properties = params
saveUpdatedInstance(dealerInstance)
redirectToAfterUpdate(dealerInstance)
}
}
}

Phonegap / Cordova and cross domain ssl request problem on android.

In one app I have participated, there was a use case:
  • User fill up a form.
  • User submit the form.
  • System send data via https to server and show a response.
During development there wasn’t any problem, but when we were going to release production version then some unsuspected situation occurred. I prepare the production version accordingly with standard flow for Android environment:
  • ant release
  • align
  • signing
During conduct tests on that version, every time I try to submit the form, a connection error appear. In that situation, at the first you should check whitelist in cordova settings. Every URL you want to connect to, must be explicit type in:
res/xml/cordova.xml
If whitelist looks fine, the error is most likely caused by inner implementation of Android System. The Android WebView does not allow by default self-signed SSL certs. When app is debug-signed the SSL error is ignored, but if app is release-signed connection to untrusted services is blocked.



Workaround


You have to remember that secure connection to service with self-signed certificate is risky and unrecommended. But if you know what you are doing there is some workaround of the security problem. Behavior of method
CordovaWebViewClient.onReceivedSslError
must be changed.


Thus add new class extended CordovaWebViewClient and override ‘onReceivedSslError’. I strongly suggest to implement custom onReceiveSslError as secure as possible. I know that the problem occours when app try connect to example.domain.com and in spite of self signed certificate the domain is trusted, so only for that case the SslError is ignored.

public class MyWebViewClient extends CordovaWebViewClient {

   private static final String TAG = MyWebViewClient.class.getName();
   private static final String AVAILABLE_SLL_CN
= "example.domain.com";

   public MyWebViewClient(DroidGap ctx) {
       super(ctx);
   }

   @Override
   public void onReceivedSslError(WebView view,
SslErrorHandler handler,
android.net.http.SslError error) {

String errorSourceCName = error.getCertificate().
getIssuedTo().getCName();

       if( AVAILABLE_SLL_CN.equals(errorSourceCName) ) {
           Log.i(TAG, "Detect ssl connection error: " +
error.toString() +
„ so the error is ignored”);

           handler.proceed();
           return;
       }

       super.onReceivedSslError(view, handler, error);
   }
}
Next step is forcing yours app to  use custom implementation of WebViewClient.

public class Start extends DroidGap
{
   private static final String TAG = Start.class.getName();

   @Override
   public void onCreate(Bundle savedInstanceState)
   {
       super.onCreate(savedInstanceState);
       super.setIntegerProperty("splashscreen", R.drawable.splash);
       super.init();

       MyWebViewClient myWebViewClient = new MyWebViewClient(this);
       myWebViewClient.setWebView(this.appView);

       this.appView.setWebViewClient(myWebViewClient);
       
// yours code

   }
}
That is all ypu have to do if minSdk of yours app is greater or equals 8. In older version of Android there is no class
android.net.http.SslError
So in class MyCordovaWebViewClient class there are errors because compliator doesn’t see SslError class. Fortunately Android is(was) open source, so it is easy to find source of the class. There is no inpediments to ‘upgrade’ app and just add the file to project. I suggest to keep original packages. Thus after all operations the source tree looks like:

Class SslError placed in source tree. 
 Now the app created in release mode can connect via https to services with self-signed SSl certificates.