Kotlin’s extensions for each class

Extensions in Kotlin are very powerful mechanism. It allows for add any method to any of existing classes. Each instance has (as in Java) equals, toString and hashCode methods, but there is much more in Kotlin.Example classesLet’s define some simple cl…

Extensions in Kotlin are very powerful mechanism. It allows for add any method to any of existing classes. Each instance has (as in Java) equals, toString and hashCode methods, but there is much more in Kotlin.

Example classes

Let’s define some simple classes describing person: normal class and data class.

class PersonJaxb {
    var firstName: String? = null
    var lastName: String? = null
    var age: Int? = null
}

data class Person(val firstName: String, val lastName: String, val age: Int)

 

Normal class extensions

All instances have methods described below.

apply method

I often work with jaxb classes similar to PersonJaxb, which has not all arg constructor and all fields must be set via setters. Kotlin helps to deal with it via apply method. Target instance is provided as delagate to closure so we could define all fields values in it and returns this. The signature is T.apply(f: T.() -> Unit): T.

@Test
fun applyTest() {
    //when
    val person = PersonJaxb().apply {
        firstName = "John"
        lastName = "Smith"
        age = 20
    }

//then
assertEquals(20, person.age)
assertEquals(“John”, person.firstName)
assertEquals(“Smith”, person.lastName)
}

 

let method

Another extension is let method which is similar to map operation for collections. It has signature T.let(f: (T) -> R): R. this is passed as parameter to given closure/function.

@Test
fun letTest() {
    //when
    val fullName = Person("John", "Smith", 20).let {
        "${it.firstName} ${it.lastName}"
    }

//then
assertEquals(“John Smith”, fullName)
}

 

run method

run method looks like merge of apply and let methods: access to this is via delegate as in apply, but it also returns value as in let method. It has signature T.run(f: T.() -> R): R.

@Test
fun runTest() {
    //when
    val fullName = Person("John", "Smith", 20).run {
        "$firstName $lastName"
    }

//then
assertEquals(“John Smith”, fullName)
}

 

to method

Each instance has also defined to infix operator, which is used to create Pair. Pairs is helpful to create map entries. It has signature A.to(that: B): Pair<A, B>.

@Test
fun toTest() {
    //when
    val pair = Person("John", "Smith", 20) to 5

//then
assertEquals(Person(“John”, “Smith”, 20), pair.first)
assertEquals(5, pair.second)
}

 

Data class methods

Data class instances have also some other helpful methods (which are not extensions, but are generated for us).

componentX methods

Data class Person has three fields and it has component method generated for each of them: component1 for firstName, component2 for lastName and component3 for age.

@Test
fun componentsTest() {
    //when
    val p = Person("John", "Smith", 20)

//then
assertEquals(“John”, p.component1())
assertEquals(“Smith”, p.component2())
assertEquals(20, p.component3())
}

Why is it helpful? componentX methods are used in extracting (similar to Scala case classes extracting mechanism), e. g.:

@Test
fun extractingTest() {
    //when
    val (first, last, age) = Person("John", "Smith", 20)

//then
assertEquals(20, age)
assertEquals(“John”, first)
assertEquals(“Smith”, last)
}

 

copy method

copy method allows to create new instance based on current instance.

@Test
fun copyTest() {
    //when
    val person = Person("John", "Smith", 20).copy(lastName = "Kowalski", firstName = "Jan")

//then
assertEquals(Person(“Jan”, “Kowalski”, 20), person)
}

 

Summary

Kotlin’s extensions for each instances are very simple and help to solve many problems. The code written with these extensions is much more readable and concise than written in Java.

Sources are available here.

You May Also Like

CasperJS for Java developers

Why CasperJS

Being a Java developer is kinda hard these days. Java may not be dead yet, but when keeping in sync with all the hipster JavaScript frameworks could make us feel a bit outside the playground. It’s even hard to list JavaScript frameworks with latest releases on one website.

In my current project, we are using AngularJS. It’a a nice abstraction of MV* pattern in frontend layer of any web application (we use Grails underneath). Here is a nice article with an 8-point Win List of Angular way of handling AJAX calls and updating the view. So it’s not only a funny new framework but a truly helper of keeping your code clean and neat.

But there is also another area when you can put helpful JS framework in place of plan-old-java one - functional tests. Especially when you are dealing with one page app with lots of asynchronous REST/JSON communication.

Selenium and Geb

In Java/JVM project the typical is to use Selenium with some wrapper like Geb. So you start your project, setup your CI-functional testing pipeline and… after 1 month of coding your tests stop working and being maintainable. The frameworks itselves are not bad, but the typical setup is so heavy and has so many points of failure that keeping it working in a real life project is really hard.

Here is my list of common myths about Selenium: * It allows you to record test scripts via handy GUI - maybe some static request/response sites. In modern web applications with asynchronous REST/JSON communication your tests must contain a lot of “waitFor” statements and you cannot automate where these should be included. * It allows you to test your web app against many browsers - don’t try to automate IE tests! You have to manually open your app in IE to see how it actually bahaves! * It integrates well with continuous integration servers like Jenkins - you have to setup Selenium Grid on server with X installed to run tests on Chrome or Firefox and a Windows server for IE. And the headless HtmlUnit driver lacks a lot of JS support.

So I decided to try something different and introduce a bit of JavaScript tooling in our project by using CasperJS.

Introduction

CasperJS is simple but powerful navigation scripting & testing utility for PhantomJS - scritable headless WebKit (which is an rendering engine used by Safari and Chrome). In short - CasperJS allows you to navigate and make assertions about web pages as they’d been rendered in Google Chrome. It is enough for me to automate the functional tests of my application.

If you want a gentle introduction to the world of CasperJS I suggest you to read: * Official website, especially installation guide and API * Introductionary article from CasperJS creator Nicolas Perriault * Highlevel testing with CasperJS by Kevin van Zonneveld * grails-angular-scaffolding plugin by Rob Fletcher with some working CasperJS tests

Full example

I run my test suite via following script:

casperjs test --direct --log-level=debug --testhost=localhost:8080 --includes=test/casper/includes/casper-angular.coffee,test/casper/includes/pages.coffee test/casper/specs/

casper-angular.coffe

casper.test.on "fail", (failure) ->
    casper.capture(screenshot)

testhost   = casper.cli.get "testhost"
screenshot = 'test-fail.png'

casper
    .log("Using testhost: #{testhost}", "info")
    .log("Using screenshot: #{screenshot}", "info")

casper.waitUntilVisible = (selector, message, callback) ->
    @waitFor ->
        @visible selector
    , callback, (timeout) ->
        @log("Selector [#{selector}] not visible, failing")
        withParentSelector selector, (parent) ->
            casper.log("Output of parent selector [#{parent}]")
            casper.debugHTML(parent)
        @echo message, "RED_BAR"
        @capture(screenshot)
        @test.fail(f("Wait timeout occured (%dms)", timeout))

withParentSelector = (selector, callback) ->
    if selector.lastIndexOf(" ") > 0
       parent = selector[0..selector.lastIndexOf(" ")-1]
       callback(parent)

Sample pages.coffee:

x = require('casper').selectXPath

class EditDocumentPage

    assertAt: ->
        casper.test.assertSelectorExists("div.customerAccountInfo", 'at EditDocumentPage')

    templatesTreeFirstCategory: 'ul.tree li label'
    templatesTreeFirstTemplate: 'ul.tree li a'
    closePreview: '.closePreview a'
    smallPreview: '.smallPreviewContent img'
    bigPreview: 'img.previewImage'
    confirmDelete: x("//div[@class='modal-footer']/a[1]")

casper.editDocument = new EditDocumentPage()

End a test script:

testhost = casper.cli.get "testhost" or 'localhost:8080'

casper.start "http://#{testhost}/app", ->
    @test.assertHttpStatus 302
    @test.assertUrlMatch /\/fakeLogin/, 'auto login'
    @test.assert @visible('input#Create'), 'mock login button'
    @click 'input#Create'

casper.then ->
    @test.assertUrlMatch /document#\/edit/, 'new document'
    @editDocument.assertAt()
    @waitUntilVisible @editDocument.templatesTreeFirstCategory, 'template categories not visible', ->
        @click @editDocument.templatesTreeFirstCategory
        @waitUntilVisible @editDocument.templatesTreeFirstTemplate, 'template not visible', ->
            @click @editDocument.templatesTreeFirstTemplate

casper.then ->
    @waitUntilVisible @editDocument.smallPreview, 'small preview not visible', ->
        # could be dblclick / whatever
        @mouseEvent('click', @editDocument.smallPreview)

casper.then ->
    @waitUntilVisible @editDocument.bigPreview, 'big preview should be visible', ->
        @test.assertEvalEquals ->
            $('.pageCounter').text()
        , '1/1', 'page counter should be visible'
        @click @editDocument.closePreview

casper.then ->
    @click 'button.cancel'
    @waitUntilVisible '.modal-footer', 'delete confirmation not visible', ->
        @click @editDocument.confirmDelete

casper.run ->
    @test.done()

Here is a list of CasperJS features/caveats used here:

  • Using CoffeeScript is a huge win for your test code to look neat
  • When using casper test command, beware of different (than above articles) logging setup. You can pass --direct --log-level=debug from commandline for best results. Logging is essential here since Phantom often exists without any error and you do want to know what just happened.
  • Extract your helper code into separate files and include them by using --includes switch.
  • When passing server URL as a commandline switch remember that in CoffeeScript variables are not visible between multiple source files (unless getting them via window object)
  • It’s good to override standard waitUntilVisible with capting a screenshot and making a proper log statement. In my version I also look for a parent selector and debugHTML the content of it - great for debugging what is actually rendered by the browser.
  • Selenium and Geb have a nice concept of Page Objects - an abstract models of pages rendered by your application. Using CoffeeScript you can write your own classes, bind selectors to properties and use then in your code script. Assigning the objects to casper instance will end up with quite nice syntax like @editDocument.assertAt().
  • There is some issue with CSS :first and :last selectors. I cannot get them working (but maybe I’m doing something wrong?). But in CasperJS you can also use XPath selectors which are fine for matching n-th child of some element (x("//div[@class='modal-footer']/a[1]")).
    Update: :first and :last are not CSS3 selectors, but JQuery ones. Here is a list of CSS3 selectors, all of these are supported by CasperJS. So you can use nth-child(1) is this case. Thanks Andy and Nicolas for the comments!

Working with CasperJS can lead you to a few hour stall, but after getting things working you have a new, cool tool in your box!