Kotlin’s extensions for each class

Extensions in Kotlin are very powerful mechanism. It allows for add any method to any of existing classes. Each instance has (as in Java) equals, toString and hashCode methods, but there is much more in Kotlin.Example classesLet’s define some simple cl…

Extensions in Kotlin are very powerful mechanism. It allows for add any method to any of existing classes. Each instance has (as in Java) equals, toString and hashCode methods, but there is much more in Kotlin.

Example classes

Let’s define some simple classes describing person: normal class and data class.

class PersonJaxb {
    var firstName: String? = null
    var lastName: String? = null
    var age: Int? = null
}

data class Person(val firstName: String, val lastName: String, val age: Int)

 

Normal class extensions

All instances have methods described below.

apply method

I often work with jaxb classes similar to PersonJaxb, which has not all arg constructor and all fields must be set via setters. Kotlin helps to deal with it via apply method. Target instance is provided as delagate to closure so we could define all fields values in it and returns this. The signature is T.apply(f: T.() -> Unit): T.

@Test
fun applyTest() {
    //when
    val person = PersonJaxb().apply {
        firstName = "John"
        lastName = "Smith"
        age = 20
    }

//then
assertEquals(20, person.age)
assertEquals(“John”, person.firstName)
assertEquals(“Smith”, person.lastName)
}

 

let method

Another extension is let method which is similar to map operation for collections. It has signature T.let(f: (T) -> R): R. this is passed as parameter to given closure/function.

@Test
fun letTest() {
    //when
    val fullName = Person("John", "Smith", 20).let {
        "${it.firstName} ${it.lastName}"
    }

//then
assertEquals(“John Smith”, fullName)
}

 

run method

run method looks like merge of apply and let methods: access to this is via delegate as in apply, but it also returns value as in let method. It has signature T.run(f: T.() -> R): R.

@Test
fun runTest() {
    //when
    val fullName = Person("John", "Smith", 20).run {
        "$firstName $lastName"
    }

//then
assertEquals(“John Smith”, fullName)
}

 

to method

Each instance has also defined to infix operator, which is used to create Pair. Pairs is helpful to create map entries. It has signature A.to(that: B): Pair<A, B>.

@Test
fun toTest() {
    //when
    val pair = Person("John", "Smith", 20) to 5

//then
assertEquals(Person(“John”, “Smith”, 20), pair.first)
assertEquals(5, pair.second)
}

 

Data class methods

Data class instances have also some other helpful methods (which are not extensions, but are generated for us).

componentX methods

Data class Person has three fields and it has component method generated for each of them: component1 for firstName, component2 for lastName and component3 for age.

@Test
fun componentsTest() {
    //when
    val p = Person("John", "Smith", 20)

//then
assertEquals(“John”, p.component1())
assertEquals(“Smith”, p.component2())
assertEquals(20, p.component3())
}

Why is it helpful? componentX methods are used in extracting (similar to Scala case classes extracting mechanism), e. g.:

@Test
fun extractingTest() {
    //when
    val (first, last, age) = Person("John", "Smith", 20)

//then
assertEquals(20, age)
assertEquals(“John”, first)
assertEquals(“Smith”, last)
}

 

copy method

copy method allows to create new instance based on current instance.

@Test
fun copyTest() {
    //when
    val person = Person("John", "Smith", 20).copy(lastName = "Kowalski", firstName = "Jan")

//then
assertEquals(Person(“Jan”, “Kowalski”, 20), person)
}

 

Summary

Kotlin’s extensions for each instances are very simple and help to solve many problems. The code written with these extensions is much more readable and concise than written in Java.

Sources are available here.

You May Also Like

Grails session timeout without XML

This article shows clean, non hacky way of configuring featureful event listeners for Grails application servlet context. Feat. HttpSessionListener as a Spring bean example with session timeout depending on whether user account is premium or not.

Common approaches

Speaking of session timeout config in Grails, a default approach is to install templates with a command. This way we got direct access to web.xml file. Also more unnecessary files are created. Despite that unnecessary files are unnecessary, we should also remember some other common knowledge: XML is not for humans.

Another, a bit more hacky, way is to create mysterious scripts/_Events.groovy file. Inside of which, by using not less enigmatic closure: eventWebXmlEnd = { filename -> ... }we can parse and hack into web.xml with a help of XmlSlurper.
Even though lot of Grails plugins do it similar way, still it’s not really straightforward, is it? Besides, where’s the IDE support? Hello!?

Examples of both above ways can be seen on StackOverflow.

Simpler and cleaner way

By adding just a single line to the already generated init closure we have it done:
class BootStrap {

def init = { servletContext ->
servletContext.addListener(OurListenerClass)
}
}

Allrighty, this is enough to avoid XML. Sweets are served after the main course though :)

Listener as a Spring bean

Let us assume we have a requirement. Set a longer session timeout for premium user account.
Users are authenticated upon session creation through SSO.

To easy meet the requirements just instantiate the CustomTimeoutSessionListener as Spring bean at resources.groovy. We also going to need some source of the user custom session timeout. Let say a ConfigService.
beans = {    
customTimeoutSessionListener(CustomTimeoutSessionListener) {
configService = ref('configService')
}
}

With such approach BootStrap.groovy has to by slightly modified. To keep control on listener instantation, instead of passing listener class type, Spring bean is injected by Grails and the instance passed:
class BootStrap {

def customTimeoutSessionListener

def init = { servletContext ->
servletContext.addListener(customTimeoutSessionListener)
}
}

An example CustomTimeoutSessionListener implementation can look like:
import javax.servlet.http.HttpSessionEvent    
import javax.servlet.http.HttpSessionListener
import your.app.ConfigService

class CustomTimeoutSessionListener implements HttpSessionListener {

ConfigService configService

@Override
void sessionCreated(HttpSessionEvent httpSessionEvent) {
httpSessionEvent.session.maxInactiveInterval = configService.sessionTimeoutSeconds
}

@Override
void sessionDestroyed(HttpSessionEvent httpSessionEvent) { /* nothing to implement */ }
}
Having at hand all power of the Spring IoC this is surely a good place to load some persisted user’s account stuff into the session or to notify any other adequate bean about user presence.

Wait, what about the user context?

Honest answer is: that depends on your case. Yet here’s an example of getSessionTimeoutMinutes() implementation using Spring Security:
import org.springframework.security.core.context.SecurityContextHolder    

class ConfigService {

static final int 3H = 3 * 60 * 60
static final int QUARTER = 15 * 60

int getSessionTimeoutSeconds() {

String username = SecurityContextHolder.context?.authentication?.principal
def account = Account.findByUsername(username)

return account?.premium ? 3H : QUARTER
}
}
This example is simplified. Does not contain much of defensive programming. Just an assumption that principal is already set and is a String - unique username. Thanks to Grails convention our ConfigService is transactional so the Account domain class can use GORM dynamic finder.
OK, config fetching implementation details are out of scope here anyway. You can get, load, fetch, obtain from wherever you like to. Domain persistence, principal object, role config, external file and so on...

Any gotchas?

There is one. When running grails test command, servletContext comes as some mocked class instance without addListener method. Thus we going to have a MissingMethodException when running tests :(

Solution is typical:
def init = { servletContext ->
if (Environment.current != Environment.TEST) {
servletContext.addListener(customTimeoutSessionListener)
}
}
An unnecessary obstacle if you ask me. Should I submit a Jira issue about that?

TL;DR

Just implement a HttpSessionListener. Create a Spring bean of the listener. Inject it into BootStrap.groovy and call servletContext.addListener(injectedListener).