Adding diff to Gitorious push notification emails

One thing we were really missing in

Gitorious is lack of diff in email notifications. We were using this feature in SVN for “quick code review”. Before we moved to Gitorious, we were using Gitolite where it was possible to configure it with git .hooks. However in Gitorious you do not have easy access to your repository directory ( it’s hashed ). So I have started googling about the feature. I have found in Gitorious a misterious feature called webhooks. But what it does is sending HTTP requests with JSON objects about commits, but without diff body. After loosing few more hours on google, forums and different groups I decided to try to implement this feature on my own. Few more hours to understand this mysterious ( for me ) Ruby on Rails code of Gitorious and I have localized few files that I should change to make it working. After all I have to say it was quite simple. The core are two lines that create commit diff in lib/event_rendering/text.rb:   repo = Repository.find_by_name_in_project!(event.target.name, event.project) diff_content = repo.git.git.show({}, [start_sha, end_sha].join(“..”))   (If you would like to modify content of the commit diff you just have to modify this git.git call ). Rest of the code is just for putting diff_content value into email :). You can review the whole patch here. After applying the patch please remember to restart git-poller and subscribe in Gitorious to email notification.

You May Also Like

Using WsLite in practice

TL;DR

There is a example working GitHub project which covers unit testing and request/response logging when using WsLite.

Why Groovy WsLite ?

I’m a huge fan of Groovy WsLite project for calling SOAP web services. Yes, in a real world you have to deal with those - big companies have huge amount of “legacy” code and are crazy about homogeneous architecture - only SOAP, Java, Oracle, AIX…

But I also never been comfortable with XFire/CXF approach of web service client code generation. I wrote a bit about other posibilites in this post. With JAXB you can also experience some freaky classloading errors - as Tomek described on his blog. In a large commercial project the “the less code the better” principle is significant. And the code generated from XSD could look kinda ugly - especially more complicated structures like sequences, choices, anys etc.

Using WsLite with native Groovy concepts like XmlSlurper could be a great choice. But since it’s a dynamic approach you have to be really careful - write good unit tests and log requests. Below are my few hints for using WsLite in practice.

Unit testing

Suppose you have some invocation of WsLite SOAPClient (original WsLite example):

def getMothersDay(long _year) {
    def response = client.send(SOAPAction: action) {
       body {
           GetMothersDay('xmlns':'http://www.27seconds.com/Holidays/US/Dates/') {
              year(_year)
           }
       }
    }
    response.GetMothersDayResponse.GetMothersDayResult.text()
}

How can the unit test like? My suggestion is to mock SOAPClient and write a simple helper to test that builded XML is correct. Example using great SpockFramework:

void setup() {
   client = Mock(SOAPClient)
   service.client = client
}

def "should pass year to GetMothersDay and return date"() {
  given:
      def year = 2013
  when:
      def date = service.getMothersDay(year)
  then:
      1 * client.send(_, _) >> { Map params, Closure requestBuilder ->
            Document doc = buildAndParseXml(requestBuilder)
            assertXpathEvaluatesTo("$year", '//ns:GetMothersDay/ns:year', doc)
            return mockResponse(Responses.mothersDay)
      }
      date == "2013-05-12T00:00:00"
}

This uses a real cool feature of Spock - even when you mock the invocation with “any mark” (_), you are able to get actual arguments. So we can build XML that would be passed to SOAPClient's send method and check that specific XPaths are correct:

void setup() {
    engine = XMLUnit.newXpathEngine()
    engine.setNamespaceContext(new SimpleNamespaceContext(namespaces()))
}

protected Document buildAndParseXml(Closure xmlBuilder) {
    def writer = new StringWriter()
    def builder = new MarkupBuilder(writer)
    builder.xml(xmlBuilder)
    return XMLUnit.buildControlDocument(writer.toString())
}

protected void assertXpathEvaluatesTo(String expectedValue,
                                      String xpathExpression, Document doc) throws XpathException {
    Assert.assertEquals(expectedValue,
            engine.evaluate(xpathExpression, doc))
}

protected Map namespaces() {
    return [ns: 'http://www.27seconds.com/Holidays/US/Dates/']
}

The XMLUnit library is used just for XpathEngine, but it is much more powerful for comparing XML documents. The NamespaceContext is needed to use correct prefixes (e.g. ns:GetMothersDay) in your Xpath expressions.

Finally - the mock returns SOAPResponse instance filled with envelope parsed from some constant XML:

protected SOAPResponse mockResponse(String resp) {
    def envelope = new XmlSlurper().parseText(resp)
    new SOAPResponse(envelope: envelope)
}

Request and response logging

The WsLite itself doesn’t use any logging framework. We usually handle it by adding own sendWithLogging method:

private SOAPResponse sendWithLogging(String action, Closure cl) {
    SOAPResponse response = client.send(SOAPAction: action, cl)
    log(response?.httpRequest, response?.httpResponse)
    return response
}

private void log(HTTPRequest request, HTTPResponse response) {
    log.debug("HTTPRequest $request with content:\n${request?.contentAsString}")
    log.debug("HTTPResponse $response with content:\n${response?.contentAsString}")
}

This logs the actual request and response send through SOAPClient. But it logs only when invocation is successful and errors are much more interesting… So here goes withExceptionHandler method:

private SOAPResponse withExceptionHandler(Closure cl) {
    try {
        cl.call()
    } catch (SOAPFaultException soapEx) {
        log(soapEx.httpRequest, soapEx.httpResponse)
        def message = soapEx.hasFault() ? soapEx.fault.text() : soapEx.message
        throw new InfrastructureException(message)
    } catch (HTTPClientException httpEx) {
        log(httpEx.request, httpEx.response)
        throw new InfrastructureException(httpEx.message)
    }
}
def send(String action, Closure cl) {
    withExceptionHandler {
        sendWithLogging(action, cl)
    }
}

XmlSlurper gotchas

Working with XML document with XmlSlurper is generally great fun, but is some cases could introduce some problems. A trivial example is parsing an id with a number to Long value:

def id = Long.valueOf(edit.'@id' as String)

The Attribute class (which edit.'@id' evaluates to) can be converted to String using as operator, but converting to Long requires using valueOf.

The second example is a bit more complicated. Consider following XML fragment:

<edit id="3">
   <params>
      <param value="label1" name="label"/>
      <param value="2" name="param2"/>
   </params>
   <value>123</value>
</edit>
<edit id="6">
   <params>
      <param value="label2" name="label"/>
      <param value="2" name="param2"/>
   </params>
   <value>456</value>
</edit>

We want to find id of edit whose label is label1. The simplest solution seems to be:

def param = doc.edit.params.param.find { it['@value'] == 'label1' }
def edit = params.parent().parent()

But it doesn’t work! The parent method returns multiple edits, not only the one that is parent of given param

Here’s the correct solution:

doc.edit.find { edit ->
    edit.params.param.find { it['@value'] == 'label1' }
}

Example

The example working project covering those hints could be found on GitHub.

Sample for lift-ng: Micro-burn 1.0.0 released

During a last few evenings in my free time I've worked on mini-application called micro-burn. The idea of it appear from work with Agile Jira in our commercial project. This is a great tool for agile projects management. It has inline tasks edition, drag & drop board, reports and many more, but it also have a few drawbacks that turn down our team motivation.

Motivation

From time to time our sprints scope is changing. It is not a big deal because we are trying to be agile :-) but Jira's burndowchart in this situation draw a peek. Because in fact that chart shows scope changes not a real burndown. It means, that chart cannot break down an x-axis if we really do more than we were planned – it always stop on at most zero.

Also for better progress monitoring we've started to split our user stories to technical tasks and estimating them. Original burndowchart doesn't show points from technical tasks. I can find motivation of this – user story almost finished isn't finished at all until user can use it. But in the other hand, if we know which tasks is problematic we can do some teamwork to move it on.

So I realize that it is a good opportunity to try some new approaches and tools.

Tools

I've started with lift framework. In the World of Single Page Applications, this framework has more than simple interface for serving REST services. It comes with awesome Comet support. Comet is a replacement for WebSockets that run on all browsers. It supports long polling and transparent fallback to short polling if limit of client connections exceed. In backend you can handle pushes in CometActor. For further reading take a look at Roundtrip promises

But lift framework is also a kind of framework of frameworks. You can handle own abstraction of CometActors and push to client javascript that shorten up your way from server to client. So it was the trigger for author of lift-ng to make a lift with Angular integration that is build on top of lift. It provides AngularActors from which you can emit/broadcast events to scope of controller. NgModelBinders that synchronize your backend model with client scope in a few lines! I've used them to send project state (all sprints and thier details) to client and notify him about scrum board changes. My actor doing all of this hard work looks pretty small:

Lift-ng also provides factories for creating of Angular services. Services could respond with futures that are transformed to Angular promises in-fly. This is all what was need to serve sprint history:

And on the client side - use of service:


In my opinion this two frameworks gives a huge boost in developing of web applications. You have the power of strongly typing with Scala, you can design your domain on Actors and all of this with simplicity of node.js – lack of json trasforming boilerplate and dynamic application reload.

DDD + Event Sourcing

I've also tried a few fresh approaches to DDD. I've organize domain objects in actors. There are SprintActors with encapsulate sprint aggregate root. Task changes are stored as events which are computed as a difference between two boards states. When it should be provided a history of sprint, next board states are computed from initial state and sequence of events. So I realize that the best way to keep this kind of event sourcing approach tested is to make random tests. This is a test doing random changes at board, calculating events and checking if initial state + events is equals to previously created state:



First look

Screenshot of first version:


If you want to look at this closer, check the source code or download ready to run fatjar on github.During a last few evenings in my free time I've worked on mini-application called micro-burn. The idea of it appear from work with Agile Jira in our commercial project. This is a great tool for agile projects management. It has inline tasks edition, drag & drop board, reports and many more, but it also have a few drawbacks that turn down our team motivation.