Advisory Messages to the rescue

The most crucial part of software development is testing. It should ensure us, that our code is correct, works according to given specs, etc. There are many kinds of tests: unit tests, integration, functional. In general you should try to test the smallest possible subset of your code and be able to check the state of the objects after the test.

This seems as rather easy task, but what if you have an integration end-to-end test to perform? In most cases asserting state in integration test is rather hard due to multiple systems interoperability. Let’s focus on a specific situation.

What I needed to do the other day was write some integration test for Jms based system. The processing pipeline is easy:

  • fetch object from DB
  • process it
  • publish on JMS

some other system (X-system) polls JMS:

  • if message is found
  • fetch it (message disappears from the JMS queue)
  • do sth with it
  • Looks simple but since I didn’t have any sane access to the X-system I wanted to be sure that my object was actually put into the queue. It was not acceptable to subscribe to the queue and fetch that object in my test – it would dusrupt the flow of the whole process.

    Fortunately I’ve been using ActiveMQ and since it offers a thing called Advisory Messages I’ve decided to use just them.

    What are advisory messages? They are a set of administrative messages that are generated on a specific event, like message consumption, message delivery, topic destruction, and many more. Each type of message is delivered to a separate topic – prefixed with ActiveMQ.Advisory. Since generation of such messages may be an overhead in production systems these features are turned off by default. You need to enable specific type of advisory message for a specific jms destination. You can do this with ths configuration change to activemq.xml

    <destinationPolicy>
       <policyMap>
          <policyEntries>
            <policyEntry queue="my/test/queue" advisoryForDelivery="true" advisoryForConsumed="true"/>                                                   
            <policyEntry topic=">" producerFlowControl="true" memoryLimit="1mb">
              <pendingSubscriberPolicy>
                <vmCursor />
              </pendingSubscriberPolicy>
            </policyEntry>
          </policyEntries>
        </policyMap>
    </destinationPolicy>
    

    As you can see, I’ve specified which advisories I want enabled. The full list of available advisories can be found here.

    Since I wanted to read messages from that topic I’ve added the following configuration to my spring context – there is one destination bean for inserting messages and one bean for advisory topic.

    <bean id="testQueue" class="org.apache.activemq.command.ActiveMQQueue" autowire="constructor">
        <constructor-arg value="my/test/queue" />
    </bean>
    
    <bean id="deliveredToTestQueueAdvisory" class="org.apache.activemq.command.ActiveMQTopic" autowire="constructor">
        <constructor-arg value="ActiveMQ.Advisory.MessageDelivered.Queue.my/test/queue" />
    </bean>
    

    Thanks to this configuration I’ve been able to check that my message was actually delivered to the queue. There’ve been no need to worry about race conditions in consuming the message from original queue – if the X-system read the message, I’d be unable to determine if it has ever been in JMS at all.

    What’s not so nice about that:

    • advisory messages can be thought of as counters rather than debugging information
    • they don’t contain any data that would allow us to match advisory message to the original message – thou you could correlate by timestamp

    All in all, it’s a good tool to have! But perhaps you have some other thoughts on this subject? How do you test JMS?

You May Also Like

Clojure web development – state of the art

It’s now more than a year that I’m getting familiar with Clojure and the more I dive into it, the more it becomes the language. Once you defeat the “parentheses fear”, everything else just makes the difference: tooling, community, good engineering practices. So it’s now time for me to convince others. In this post I’ll try to walktrough a simple web application from scratch to show key tools and libraries used to develop with Clojure in late 2015.

Note for Clojurians: This material is rather elementary and may be useful for you if you already know Clojure a bit but never did anything bigger than hello world application.

Note for Java developers: This material shows how to replace Spring, Angular, grunt, live-reload with a bunch of Clojure tools and libraries and a bit of code.

The repo with final code and individual steps is here.

Bootstrap

I think all agreed that component is the industry standard for managing lifecycle of Clojure applications. If you are a Java developer you may think of it as a Spring (DI) replacement - you declare dependencies between “components” which are resolved on “system” startup. So you just say “my component needs a repository/database pool” and component library “injects” it for you.

To keep things simple I like to start with duct web app template. It’s a nice starter component application following the 12-factor philosophy. So let’s start with it:

lein new duct clojure-web-app +example

The +example parameter tells duct to create an example endpoint with HTTP routes - this would be helpful. To finish bootstraping run lein setup inside clojure-web-app directory.

Ok, let’s dive into the code. Component and injection related code should be in system.clj file:

(defn new-system [config]
  (let [config (meta-merge base-config config)]
    (-> (component/system-map
         :app  (handler-component (:app config))
         :http (jetty-server (:http config))
         :example (endpoint-component example-endpoint))
        (component/system-using
         {:http [:app]
          :app  [:example]
          :example []}))))

In the first section you instantiate components without dependencies, which are resolved in the second section. So in this example, “http” component (server) requires “app” (application abstraction), which in turn is injected with “example” (actual routes). If your component needs others, you just can get then by names (precisely: by Clojure keywords).

To start the system you must fire a REPL - interactive environment running within context of your application:

lein repl

After seeing prompt type (go). Application should start, you can visit http://localhost:3000 to see some example page.

A huge benefit of using component approach is that you get fully reloadable application. When you change literally anything - configuration, endpoints, implementation, you can just type (reset) in REPL and your application is up-to-date with the code. It’s a feature of the language, no JRebel, Spring-reloaded needed.

Adding REST endpoint

Ok, in the next step let’s add some basic REST endpoint returning JSON. We need to add 2 dependencies in project.clj file:

:dependencies
 ...
  [ring/ring-json "0.3.1"]
  [cheshire "5.1.1"]

Ring-json adds support for JSON for your routes (in ring it’s called middleware) and cheshire is Clojure JSON parser (like Jackson in Java). Modifying project dependencies if one of the few tasks that require restarting the REPL, so hit CTRL-C and type lein repl again.

To configure JSON middleware we have to add wrap-json-body and wrap-json-response just before wrap-defaults in system.clj:

(:require 
 ...
 [ring.middleware.json :refer [wrap-json-body wrap-json-response]])

(def base-config
   {:app {:middleware [[wrap-not-found :not-found]
                      [wrap-json-body {:keywords? true}]
                      [wrap-json-response]
                      [wrap-defaults :defaults]]

And finally, in endpoint/example.clj we must add some route with JSON response:

(:require 
 ...
 [ring.util.response :refer [response]]))

(defn example-endpoint [config]
  (routes
    (GET "/hello" [] (response {:hello "world"}))
    ...

Reload app with (reset) in REPL and test new route with curl:

curl -v http://localhost:3000/hello

< HTTP/1.1 200 OK
< Date: Tue, 15 Sep 2015 21:17:37 GMT
< Content-Type: application/json; charset=utf-8
< Set-Cookie: ring-session=37c337fb-6bbc-4e65-a060-1997718d03e0;Path=/;HttpOnly
< X-XSS-Protection: 1; mode=block
< X-Frame-Options: SAMEORIGIN
< X-Content-Type-Options: nosniff
< Content-Length: 151
* Server Jetty(9.2.10.v20150310) is not blacklisted
< Server: Jetty(9.2.10.v20150310)
<
* Connection #0 to host localhost left intact
{"hello": "world"}

It works! In case of any problems you can find working version in this commit.

Adding frontend with figwheel

Coding backend in Clojure is great, but what about the frontend? As you may already know, Clojure could be compiled not only to JVM bytecode, but also to Javascript. This may sound familiar if you used e.g. Coffescript. But ClojureScript philosophy is not only to provide some syntax sugar, but improve your development cycle with great tooling and fully interactive development. Let’s see how to achieve it.

The best way to introduce ClojureScript to a project is figweel. First let’s add fighweel plugin and configuration to project.clj:

:plugins
   ...
   [lein-figwheel "0.3.9"]

And cljsbuild configuration:

:cljsbuild
    {:builds [{:id "dev"
               :source-paths ["src-cljs"]
               :figwheel true
               :compiler {:main       "clojure-web-app.core"
                          :asset-path "js/out"
                          :output-to  "resources/public/js/clojure-web-app.js"
                          :output-dir "resources/public/js/out"}}]}

In short this tells ClojureScript compiler to take sources from src-cljs with figweel support and but resulting JavaScript into resources/public/js/clojure-web-app.js file. So we need to include this file in a simple HTML page:

<!DOCTYPE html>
<head>
</head>
<body>
  <div id="main">
  </div>
  <script src="js/clojure-web-app.js" type="text/javascript"></script>
</body>
</html>

To serve this static file we need to change some defaults and add corresponding route. In system.clj change api-defaults to site-defaults both in require section and base-config function. In example.clj add following route:

(GET "/" [] (io/resource "public/index.html")

Again (reset) in REPL window should reload everything.

But where is our ClojureScript source file? Let’s create file core.cljs in src-cljs/clojure-web-app directory:

(ns ^:figwheel-always clojure-web-app.core)

(enable-console-print!)

(println "hello from clojurescript")

Open another terminal and run lein fighweel. It should compile ClojureScript and print ‘Prompt will show when figwheel connects to your application’. Open http://localhost:3000. Fighweel window should prompt:

To quit, type: :cljs/quit
cljs.user=>

Type (js/alert "hello"). Boom! If everything worked you should see and alert in your browser. Open developers console in your browser. You should see hello from clojurescript printed on the console. Change it in core.cljs to (println "fighweel rocks") and save the file. Without reloading the page your should see updated message. Figweel rocks! Again, in case of any problems, refer to this commit.

In the next post I’ll show how to fetch data from MongoDB, serve it with REST to the broser and write ReactJs/Om components to render it. Stay tuned!

Open IMS Core Mr interface

Open IMS Core does’t have standard way to define connection to MRF (Media Resource Function) on Mr interface.In IMS Mr interface is based on SIP and is similar to ISC used by Application Server (AS). Because of that we can define MRF as IMS AS and just add Wildcard PSI that has trigger on that AS. That [...]